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ABSTRACT  

Anthelmintic drugs apart from a regular treatment of worm infections, find their 

common use in prophylaxis. The prophylactic usage in farm animals and mass drug 

administrations (MDA) in humans are common due to an unavailability of effective 

vaccines. The anthelmintic resistance occurs when an anthelmintic drug is 

repeatedly used resulting in selection of resistant parasites. Reports of 

anthelmintics resistance are extensive in farm animals. Emerging reports of 

resistance in human parasites raises a serious concern. Under the present 

scenario, research as a part of my graduate program is aimed at countering 

anthelmintic resistance. I have addressed this aim by working on three different 

approaches / goals that are arranged into individual chapters in my dissertation. In 

my first goal (chapter 3), I have proposed a mechanism to potentiate cholinomimetic 

anthelmintics like levamisole. Levamisole acts on the nicotinic receptors of the 

somatic (body) muscle of the parasite to produce paralysis. Presently, levamisole 

resistance is reported in major livestock producing areas across the world. Using 

Ascaris suum a round worm of pigs as a model parasite, I have studied a 

mechanism to potentiate the levamisole and thus counter levamisole resistance in 

parasitic worms. I have used electrophysiological methods on the somatic muscle of 

A. suum to study the levamisole response. I have observed that, a brief application 

of AF2 caused potentiation of levamisole responses. AF2 neuropeptide has been 

isolated in abundant quantities across nematode species and shown to be 

excitatory on neuromuscular system of nematodes. I have proposed that AF2 
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receptors are attractive targets in order to potentiate other cholinomimetic 

anthelmintics like levamisole, pyrantel and oxantel.  

The second goal (chapter 4) explores the study of anthelmintic combination 

Startect®. Combination of anthelmintic drugs is generally employed to slow the 

onset of resistance in parasites and to achieve synergism in therapy. Startect® 

consists of derquantel, a new anthelmintic drug that is combined with abamectin to 

treat resistant parasitic worms in sheep. Derquantel and abamectin have been 

hypothesized to interact synergistically to control worm infections. I have tested this 

hypothesis in isolated tissues (somatic muscle and pharynx) of parasitic nematode 

A. suum. In this study, I have concluded that these two drugs produced a greater 

than additive effect on the somatic muscle nicotinic receptors but, did not interact on 

the pharyngeal muscle glutamate receptors.  

In the third goal (chapter 5) I have identified nicotinic receptor population in the 

pharynx of the parasitic worm A. suum and proposed them as novel drug targets. In 

my study, current cholinomimetic drugs did not act on the nicotinic receptors of 

pharynx. This demonstrated that they are novel targets. As current literature on 

pharyngeal nicotinic receptors is limited, I have explored their pharmacological 

properties. I have observed that the nicotinic receptors of pharynx are distinct from 

the nicotinic receptors of vertebrate host. Hence, these receptors are attractive 

targets for selective drug targeting of parasites and to minimize the side effects in 

vertebrate hosts.   

Key words: levamisole, potentiation, AF2, abamectin, derquantel, interaction, 

pharyngeal nAChRs   
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CHAPTER 1. GENERAL INTRODUCTION 

 

1.1 Introduction 

Parasitism is an association between the parasite and the host, benefiting the 

parasite while harming the host. Endoparasites like helminths reside in different 

tissues and organs of the host. Helminth parasites infect more than a billion people 

worldwide. The word “helminth” is derived from the Greek word for “worms”. 

Helminths fall under three main groups namely: flatworms (platyhelminths, include 

flukes and tapeworms), thorny headed worms (acanthocephalans) and roundworms 

(nematodes). Gastro Intestinal (GI) nematodes namely round worms, hook worms 

and whipworms, are soil transmitted. These GI nematode infections are endemic to 

a majority of tropical countries (Albonico et al., 2004; Savioli and Albonico, 2004; 

Hotez et al., 2007a). The high global prevalence of helminth infection in humans 

and livestock has resulted in debility, reduced productivity and severe economic 

losses (de Silva et al., 2003; Kaplan, 2004b). The drugs that are used to control 

helminth infections are called “anthelmintics”. Currently, as there are no effective 

vaccines available, the treatment and the prophylaxis of worm infections rely mainly 

upon anthelmintic drugs. Anthelmintics act on the parasitic worms by selectively 

disrupting their physiology. GI nematode worms reside and maintain their site of 

predilection in the host gut by constantly moving against peristaltic waves of the GI 

tract. The movements of worms resemble sinusoidal waves which are facilitated by 

rhythmic contractions and relaxations of the worm somatic muscle. Worms use their 

muscular pharynx to constantly feed on the ingesta of the host gut in order to meet 
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energy demands. Pharyngeal peristalsis helps in ingestion of the food and also aids 

in digestion. Both movement of the worm and the pharyngeal peristalsis is assisted 

by rhythmic activations of excitatory neurons and inhibitory motor neurons 

innervating the somatic or pharyngeal muscle groups. The cholinergic transmission 

is responsible for the excitatory neuromuscular transmission in somatic muscle as 

well as pharyngeal muscle. However, the inhibitory transmission differs in somatic 

muscle and pharyngeal muscle of the worm. The inhibitory neuromuscular 

transmission is GABAergic in somatic muscle while, glutamatergic in pharyngeal 

muscle. The neurotransmitters (ACh, GABA or glutamate) released at the 

neuromuscular junctions activate the post synaptic receptors on the somatic muscle 

(nAChRs or GABA gated chloride channels) and the pharynx (nAChRs or glutamate 

gated chloride channels). 

Broadly, anthelmintics are classified into two main groups based on their mode of 

action. First group contains anthelmintics that target the membrane ion-channels of 

the nematode somatic muscle (example levamisole, pyrantel) or pharynx (example 

ivermectin). The action on ion channels is rapid in onset (less than 4 hours). The 

anthelmintic drugs which mimic ACh when they act on the nAChRs of the somatic 

muscle are referred as cholinergic anthelmintics (example levamisole, pyrantel). 

Release of endogenous neurotransmitters at the neuromuscular junction leads to 

receptor binding and the action of neurotransmitter is quickly terminated by active 

reuptake or enzymatic destruction.  However, there are no enzymes in the worm 

which can inactivate or breakdown the anthelmintic drugs. This result in anthelmintic 
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drugs to exist in their active form result in the worm, persistent activation of ion 

channels leading to disruption of the resting membrane potential.  

Second group contains anthelmintics that affect the parasite by inhibiting 

biochemical pathways and/or enzymes. This group includes benzimidazoles like 

albendazole (inhibit polymerization of microtubules), closantel (inhibits chitinase), 

diethylcarbamazine (inhibit lipooxygenase), melarsomine (binds to –SH group on 

enzymes like glutathione reductase), nitazoxanide (inhibit pyruvate-ferredoxin 

oxidoreductase), nitroscanate (inhibits cholinesterase and uncouple oxidative 

phosphorylation). The drugs belonging to this group act gradually (1-4 days) 

resulting in weakening the parasite and eventually its removal from the host (Martin 

and Robertson, 2000, 2007).  

At therapeutic doses, anthelmintics are selective on the parasite over the host and 

hence, effective in treating worm infections. Treatment with anthelmintics against 

parasitic worms fails during anthelmintic resistance. Anthelmintic resistance refers 

to the ability of parasites to survive treatments that are generally effective at the 

recommended therapeutic doses. Resistance developed to one anthelmintic drug 

affects the efficacy of other drugs that target the same receptors. The situation 

becomes alarming when anthelmintic resistance develops to multiple groups of 

drugs that act on different receptors on the parasite. Intensive use of an 

anthelmintic agent to control worm infections in herds has led to the selection of 

genetically resistant parasites. This situation is also true in some human parasitic 

infections in countries where mass drug administration (MDA) is commonly used. 

Resistance has reduced the efficacy of many of the currently used anthelmintics 
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thus, limiting our drug options to treat worm infections (James et al., 2009). Further, 

anthelmintic resistance is also a global concern due to the high prevalence of 

infections in both humans and livestock (Geerts and Gryseels, 2000; Kaplan, 

2004b; Jones and George, 2005). Hence, the development of anthelmintic 

resistance needs to be countered either by increasing the potency of existing 

anthelmintics or identifying potential target sites on the worm for the development of 

new anthelmintic drugs.  

 

1.2 Thesis Organization 

I have organized my thesis dissertation into chapters to cover the review of 

literature together with my research attempts to counter the problem of anthelmintic 

resistance. In chapter 2, I have reviewed the background information pertaining to 

the life cycle, ion channels (of somatic muscle and pharynx) and neuropeptides of 

the parasitic nematode Ascaris suum. The emphasis is placed on the ion channels 

which are the targets of anthelmintic drugs. In addition, how the ion channels in turn 

are modulated by neuropeptides secreted by nematodes and how we can explore 

the possibility of utilizing neuropeptide receptors for controlling worm infections. At 

relevant places, I have included additional information from the model nematode 

Caenorhabditis elegans and the vertebrate hosts for meaningful comparisons. My 

PhD study includes three projects which employ the current clamp technique. Each 

project is reported as an individual chapter (Chapter 3, 4 and 5).  

The published work in chapter 3 has been reproduced from the journal Molecular 

and Biochemical Parasitology (2010). A background for my project in chapter 3 was 
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initiated based on the observations made by Trailovic et al (2005) on the AF2 

receptor responses in somatic muscle of A. suum. AF2 is an excitatory 

neuropeptide found to be abundant across the phylum nematoda. Trailovic et al 

(2005) showed that a brief application of neuropeptide AF2, produces long-lasting 

potentiation of the membrane potential and the contraction responses of the 

somatic muscle to ACh. They proposed a model to explain their observations that 

AF2 stimulates the voltage-activated calcium channels (VACCs) and elevates the 

cytosolic calcium from the sarcoplasmic stores (Trailovic et al., 2005). In 

subsequent findings, Verma et al (2007)confirmed that AF2 caused an increase in 

the voltage activated calcium currents in A. suum somatic muscle. Based on these 

observations, I have explored the possibility that since AF2 potentiates the ACh 

response, then does it have any effect on the responses to cholinergic anthelmintics 

like levamisole? Cholinergic anthelmintics like levamisole mimic ACh when they act 

on the nAChRs of the Ascaris somatic muscle. I have taken the research further by 

testing the hypothesis that AF2 potentiates levamisole similar to ACh in the somatic 

muscle of A. suum. In a current clamp study, I have examined the interactions of 

levamisole receptor, AF2 neuropeptide receptor and ryanodine receptors (RyRs) 

which modulates the cytosolic calcium levels.  

Chapter 4 consists of a Pfizer project to test interaction of two anthelmintic drugs 

derquantel and abamectin present in a novel anthelmintic combination Startect®. 

The novel anthelmintic combination Startect® has been released recently into the 

market. These drugs have been hypothesized to act synergistically on the parasitic 

worms to produce the anthelmintic effect. I have tested this hypothesis on the 
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somatic muscle and the pharynx of our model parasite A. suum. I have used current 

clamp technique to study the responses to the individual drugs and also their 

combination on the somatic muscle and the pharynx of A. suum.  

In chapter 5, I have pharmacologically characterized a novel population of nAChRs 

on the pharynx of A. suum. Here, I have proposed pharyngeal nAChRs of 

nematodes as unexploited drug target that has the potential to be screened for 

developing new anthelmintic drugs. Here, I tested the hypothesis that the 

pharyngeal nAChRs of Ascaris are pharmacologically distinct from the known 

nAChRs of the somatic muscle the worm or nAChRs of the vertebrate host.  

In chapter 6, I have included a general discussion summarizing the significance of 

my research findings and the future studies in this area. In appendix, I have 

included a published review paper (Robertson et al., 2008) elaborating the 

electrophysiological techniques employed on the somatic muscle preparation of A. 

suum. This paper includes the electrophysiological techniques namely current 

clamp, voltage clamp and patch clamp, the analysis of the recordings and their 

interpretation.   
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CHAPTER 2. LITERATURE REVIEW 

 

2.1 Nematode parasites 

Nematodes are among the numerically dominant metazoans on our planet Earth. 

They are the most ubiquitous, numerous and diverse phylum inhabiting terrestrial, 

marine and freshwater environments. Plat (1994) estimated that for every five 

animals living on our planet, four are nematodes! So far, more than 26,000 

nematode species have been identified of which, about 16,000 are parasitic 

species. New species of nematode parasites are still being identified and recorded 

(Okulewicz et al., 2005). Nematodes diverged from the arthropods and chordates 

lineage over 1200 million years ago (Wang et al., 1999). The word “Nematoda” 

comes from the Greek words “nematos”, meaning thread, and “eidos”, meaning 

form. Nematodes are known to infect plants, invertebrates and vertebrates. The 

vast majority of nematodes are free-living microbivores, while many species have 

adopted parasitic lifestyle. Parasitic nematodes have been known for a long time 

and the earliest recorded literature dates back to Egyptian papyrus from 1500 BC. 

Nematode parasites are also mentioned by the ancient Greeks namely Aristotle and 

Hippocrates (the father of scientific medicine). Some nematode parasite depends 

on the host for transport to a new food source (phoretic association). Some 

nematodes use the host as a source of food upon its death (necromantic 

association). 
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Most plants and animals have parasitic nematode species adapted uniquely to 

exploit their food, other resources in addition to gaining shelter. The reasons that 

ensures success for the parasitic life of the nematode includes,  

a) Exterior shell covering the eggs protect from the environment.  

b) Cuticle surrounds the larval and the adult stages protects from the host 

environment. c) Dormant facultative diapause employed by some nematodes (like 

dauer stage of C. elegans) during the harsh period. 

d) Biochemical adaptations of the larval and adult stages once they are in the host 

or the intermediate host.  

e)  Implementation several reproductive strategies (sexual or hermaphrodite).  

Some nematodes are being used as model parasites to study extensively to 

understand their lifecycle, ecology and physiology in order to effectively control or 

manage them (Blaxter and Bird, 1997).   

 

2.2 Nematode body structure 

Nematodes are bilaterally symmetrical worms possess body architecture analogous 

to a tube within a tube. The outer tube is formed by the body wall while, the inner 

tube is formed by digestive tract. Between these two tubes, a fluid filled body cavity 

called the pseudocoelom lies that contain the reproductive tract. Unlike a true 

coelom the pseudocoelom does not possess a cellular lining or peritoneum. Since 

there is no developed vascular system, the circulation of nutrients in the 

pseudocoelom is assisted by changes in hydrostatic pressure. The hydrostatic 

pressure of pseudocoel (16-225mm Hg with a mean of 70mm Hg in Ascaris suum) 
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is gained or lost during somatic muscle contractions/relaxations when nematodes 

move around (Harris, 1957). The body wall has three layers: outer cuticle, middle 

hypodermis and an inner layer of somatic muscle cells (see Fig 1).  

 

2.2.1 Cuticle 

The cuticle is a non-cellular complex structure which surrounds the entire body of 

the worm forming a barrier between the nematode and its environment. At the 

posterior end of some male nematodes the cuticle forms the bursa, a flap like 

extension used for grasping the female during copulation. Bursa is absent in male 

Ascaris but, rather contains curved tail with two spicules. The cuticle allows the 

passage of water molecules and ions. The rigid cuticle maintains the integrity of the 

body and also protects against host digestive enzymes or immune system. Fig 1.B 

and C shows the cuticle providing attachment to hypodermis and to body-wall 

muscle (Singh, 1978; Johnstone, 2000; Page et al., 2006). The cuticle is not an inert 

structure rather; it contains enzymes to help moulting. The cuticle contains 

negatively charged pores with a radius of 1.5 nm allows transport of organic acids 

(both volatile and nonvolatile fatty acids). These organic acids are produced as a 

result of anaerobic metabolism of carbohydrates in the somatic muscle of the worm. 

The structural part of cuticle formed by a collagenous extracellular matrix containing 

cross-linked collagens and insoluble proteins called cuticulins. The cuticle is 

secreted by the underlying layer of hypodermis. In nematodes, the synthesis of 
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cuticle occurs four times at the end of each larval stage between L1 to L2, L2 to L3, 

L3 to L4 and L4 to immature adults. 

 

2.2.2 Hypodermis 

The hypodermis contains an enzyme protocollagen-prolinehydroxylase responsible 

for synthesizing the external cuticle. Electrophysiological studies have reported 

large conductance anion channels present on the hypodermal membrane facing the 

cuticle and somatic muscle membrane. These ion channels are shown to conduct 

organic acids generated from anaerobic metabolism of carbohydrates towards the 

cuticle for excretion (Blair et al., 2003). The functions of hypodermis include 

formation / dissolution of cuticle (during moulting), active exchange of water and 

small molecules while providing anchorage for somatic muscle (Fetterer and 

Wasiuta, 1987). The cellular hypodermis protrudes into the body cavity forming four 

longitudinally thickened areas known as cords. There are dorsal, ventral and two 

lateral cords. The dorsal and ventral cords contain longitudinal nerve trunks while 

the lateral cords contain excretory canals (Fig1.B). Internal to the hypodermis we 

find an obliquely striated layer of somatic muscle. 

 

2.2.3 Somatic muscle  

The somatic musculature of parasitic nematode Ascaris suum consists of 

longitudinal muscles which carry oblique striations, Fig 1.C (Rosenbluth, 1965a, 

1965b; Stretton, 1976). There are about 105 muscle cells present in the worm which 
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are innervated by 250 neurons. The somatic muscle layer is divided by two lateral 

lines on either side of the worm resulting in dorsal and ventral muscular layers (del 

Castillo et al., 1989). Each half is innervated by individual nerve cords namely 

dorsal and ventral nerve cords present underlying the musculature. Somatic muscle 

cells have contractile and non-contractile structures. The contractile structure of the 

somatic muscle is called the spindle region. The spindle region consists of muscle 

filaments which can contract upon depolarization of the muscle cell. In addition, the 

contractile spindle anchors the muscle cell to the underlying hypodermis hence in 

turn to the cuticle. The non-contractile structures of the muscle cell include arms 

which reach nerve cord for innervation and a bag region containing nucleus, cell 

organelles and glycogen stores. A constricted neck region (well defined in Ascaris) 

is formed when the muscle bag connects to the spindle region of muscle cell before 

giving rise to arms. The arm extends all the way towards the nerve cord and 

branches into finger like projections just before receiving innervation from the nerve 

cord.  

 

2.2.4 Arm 

The arm arises as a thin cytoplasmic extension of the muscle cell near the neck 

region (Fig.1.c). Generally, innervation of vertebrate muscle cell gets the innervation 

from the nerve process that branches out from the nerve cord. Strangely, in 

nematodes the muscle sends out arms which branches into finger like projections at 

the end to receive innervation from the nerve cord (Rosenbluth, 1965b; Stretton, 
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1976). Muscle bags send more than one arm to the nerve cord (average 2.7 arms/ 

muscle cell in Ascaris). A syncytium is formed by the aggregation of fingers 

(average of 3 fingers/arm) arising from numerous arms of several muscle cells 

which surrounds the nerve cord (Rosenbluth, 1965b; Del Castillo et al., 1967; del 

Castillo et al., 1989). The impulses are conducted at the level of syncytium 

surrounding the nerve cord with a 50 nm space forms the neuromuscular junction 

(NMJ). The arm acts as a cable to carry the impulses all the way to bag region and 

finally conveyed to spindle region for contraction / relaxation. Before joining the 

syncytium the muscle arms belonging to different muscle bags cross over. The 

cross over region contains tight junctions which, allows signals from the syncytium 

to be shared between the muscle cells. The tight junction functions to synchronize 

the electrical activity to aid in better signal transmission over muscle cells that lies 

far away from the nerve cord (del Castillo et al., 1989).  
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Fig. 1. A. A photograph of female A. suum worm. A 15 cm scale placed just above 

the worm. B. Diagram of cross section of the worm depicting the position of nerve 



www.manaraa.com

14 

 

cords, lateral canals, muscle cells, hypodermis and cuticle (Martin et al., 1996b). 

The area with in the rectangular interrupted box if further magnified in C to show the 

architecture of muscle and its innervation. C. Diagram of  muscle cell (Rosenbluth, 

1965b) showing the bag region, B, spindle containing contractile filaments, F, which 

are oriented obliquely. The spindle makes contact with hypodermis, H covered 

externally by cuticle, C. The arm, A arising near the neck region reaches for the 

nerve cord, N, forming a syncytium. The neuromuscular junctions are formed 

between syncytium and nerve cord. The photographs on the right side shows the 

syncytium (top), oblique striated filaments (middle) and position of dyads formed by 

a cisternae of sarcoplasmic reticulum meeting the t-tubule shown in white arrow 

within the photograph (Rosenbluth, 1965a, 1969; del Castillo et al., 1989).    

 

2.2.5 Syncytium 

Syncytium formed by the interlacing of fingers to forms a closely woven network 

around the nerve cord (Fig.1.C). At the neuromuscular junctions (NMJs), the nerve 

cord forms neuronal extensions or spines which make synaptic contact with the 

muscle syncytium. At the NMJ neurotransmitters released from the spines of nerve 

cord interact with the post synaptic receptors of the syncytium (Del Castillo et al., 

1963b; del Castillo et al., 1989).  The action potential is then carried to the bag 

region and the spindle region via the arms. Muscle syncytium is also the place 

where spontaneous activity / spikes are generated due to a tonic release of 

neurotransmitter from the spines of nerve cord.   
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2.2.6 Bag region of muscle cell 

Unlike the contractile spindle region of the muscle cell which is firmly attached to the 

hypodermis, the bag region of the somatic muscle floats freely facing the 

pseudocoele (Fig.1.C). The muscle bag contains nucleus, fibrillar bundles of 

cytoskeleton and mitochondria. The muscle bag is filled with glycogen granules as 

an energy reserve for the worm during starvation (Rosenbluth, 1965b). In addition to 

synaptic receptors found on the syncytial membrane at the NMJs, there are 

receptors found extra-synaptically on the bag region of the muscle cell. The 

existence of extra-synaptic receptors raises the possibility of autocrine or paracrine 

functions of the muscle cells. Unlike the synapse, receptors on the bag region of the 

muscle are easily accessible to electrophysiological techniques. Many 

electrophysiological studies aimed at knowing the receptors of the muscle cell are 

resulted from the study of extra-synaptic receptors of the bag region (Martin et al., 

1991). Two microelectrode current clamp or voltage-clamp has been used to study 

the responses of ion channels to drugs at the whole cell level. In these techniques 

two microelectrodes are placed in the bag region and the drugs are perfused locally 

over the bag region to study the cell responses. For studying ion channels at the 

single channel level using the patch clamp, the somatic muscle preparations were 

treated with collagenase to derive membrane vesicles. These vesicles budding from 

the muscle bag membrane are then patched on to patch pipette to study the 

electrical properties of the single channels (Robertson and Martin, 1993; 

Levandoski et al., 2005; Qian et al., 2006).  
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2.2.7 The contractile spindle  

The contractile apparatus of the muscle cell are similar to skeletal muscle of 

vertebrates but they are formed by obliquely striated filaments (Fig.1.c). These 

contractile filaments are restricted to the spindle region of the muscle cell. The 

contractile filaments form an angle of 6 degrees with the long axis of the worm 

resulting in oblique striations. The contractile filaments of the spindle are firmly 

attached underneath to the hypodermis. The organization includes A-zone 

(Anisotropic zone containing thick filaments), I- zone (Isotropic zone, containing thin 

filaments). In vertebrates, a typical Z-line present in the middle of I-zone which 

demarcates the length of the sarcomere. But, Ascaris muscle does not contain Z-

line. Instead has Z-line counterparts, referred to as dense bodies. These dense 

bodies are closely associated with the sarcolemma (plasma membrane of muscle 

cell) on one side and with a cisterna of the sarcoplasmic reticulum on the other side 

(Rosenbluth, 1965a). The cisternae are analogous to terminal cisternae of 

vertebrate muscle which are formed as enlarged areas of sarcoplasmic reticulum 

surrounding the t-tubule. The cisternae of sarcoplasmic reticulum are gated by 

ryanodine receptors (RYRs) which mediate a rapid rise in intracellular calcium for 

muscle contraction. An action potential arising from the NMJ travels to the muscle 

spindle along the sarcolemma which extends deeper into the muscle filaments as 

transverse tubules (t-tubules). T-tubules allow depolarization of the membrane to 

reach the interior of muscle cell for contraction. Voltage gated calcium channels of 

the t-tubule lie in opposition to the cisternae containing RYRs for facilitating calcium 



www.manaraa.com

17 

 

induced calcium release. Calcium induced calcium release occurs as a sequel to 

the opening of voltage gated calcium channels present on the t-tubule resulting in 

contraction of the muscle. The contraction of the muscle cell depends on ATP. 

Contraction is terminated when ATP gets broken down and cytosolic calcium is 

rapidly taken into the sarcoplasmic reticulum.      

 

2.3 Comparison of neuromuscular system of Ascaris and 

vertebrates 

Muscle cells of nematodes are unusual compared to the vertebrate neuromuscular 

system. Unlike vertebrates, muscles send processes (arms) to the nerve for 

receiving innervation from the nerve cord. The somatic muscle of Ascaris is similar 

to vertebrate smooth muscle which is roughly spindle shaped cell outline containing 

a nucleus and depends on extracellular calcium for contractions. The presence of 

cross striations is similar to vertebrate skeletal muscle, but these striations are 

oblique instead of being parallel to the long axis. Ascaris somatic muscle shows 

similarities to cardiac muscle by possessing dyads instead of triads of vertebrate 

skeletal muscle. The dyads of Ascaris somatic muscle are a combination of a 

terminal cisternae and a t-tubule while triads are a result of two terminal cisternae 

surrounding a t-tubule, Fig.1.C (Rosenbluth, 1969). Even the properties of somatic 

muscle syncytium are similar to vertebrate cardiac muscle in terms of auto 

rhythmicity or automatic production of spike potentials. 
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2.4 Nervous system in Ascaris suum  

The nervous system in Ascaris was described as early as the beginnings of the 20th 

century by Goldschmidt (1910). Eighty years later, advances in biochemistry, 

immunology, electrophysiology and molecular biology have led to the accumulation 

of knowledge on the structure and function of the nervous system of the worm. 

Stretton et al (1992) described the Ascaris nervous system further as an 

anatomically simple nervous system that contains only 298 neurons but chemically 

complex as it secretes a variety of neurotransmitters and neuropeptides.  

Among 298 neurons, 200 are found to be associated with the circum-esophageal 

nerve ring coupled with associated ganglia and also the posterior ganglia (posterior 

5mm). In Ascaris, the circum-esophageal nerve ring is considered as the brain 

located about 2- 5 mm from the anterior tip. The posterior ganglia are found 

caudally about 5mm from the posterior tip of the worm (Fig 2.B). The nerve cords 

namely one dorsal and two sub ventral nerve cords arise from the nerve ring and 

travel in the anterior direction referred as pharyngeal / enteric nervous system. On 

the other hand, the somatic nervous system arises from the nerve ring to run 

posteriorly covering the entire length of the worm (Fig 2.C). The somatic nervous 

system is formed by two main nerve cords, dorsal and ventral nerve cord. The 

ventral nerve cord contains neuronal cell bodies (about 100 neurons) while, the 

dorsal nerve cord mainly contains the axonal fibers instead of entire neuronal cells. 

The neuronal cell bodies of the ventral nerve cord communicate with the dorsal 

nerve cords via commissures each formed by 1-2 axons (Stretton et al., 1992; 
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Martin et al., 1996b). Since all the neurons are concentrated in the ventral nerve 

cord the axons from the commissures make synapses with dorsal and ventral 

somatic musculature. 

These neuronal cell bodies of the somatic nervous system of Ascaris are broadly 

classified as motor neurons, interneurons and sensory neurons. Motor neurons 

derive their name based on their site of innervation (dorsal or ventral muscle) and 

also on their function (excitatory or inhibitory). Dorsal motor neurons of the nerve 

cord innervate dorsal musculature while ventral motor neurons innervate ventral 

musculature. Each motor neuron morphologically has an axonal region which 

makes multiple neuromuscular synapses while, the dendritic region receives 

synaptic input from other neurons. The excitatory neurons which excite dorsal 

musculature are referred to as dorsal excitatory (namely DE1, DE2 and DE3) and 

those which excite ventral musculature are called ventral excitatory (V1 and V2). 

These excitatory neurons contain the enzyme cholineacetyltransferase, responsible 

for the synthesis of ACh, an excitatory neurotransmitter (Johnson and Stretton, 

1985). The inhibitory neurons which inhibit the dorsal musculature referred as 

dorsal inhibitory (DI) and that which inhibit the ventral musculature are called ventral 

inhibitory (VI). These inhibitory neurons have shown GABA immunoreactivity 

synthesis and release of GABA, an inhibitory neurotransmitter (Johnson and 

Stretton, 1987). The excitatory motor neurons of the dorsal and ventral nerve cord 

are also connected by interneurons. The sensory neurons are specialized to sense 

environmental cues and to convey the information further to the motor neurons. 
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The repeating segmental pattern arrangement of excitatory and inhibitory motor 

neurons has been described in Ascaris (Walrond et al., 1985; Stretton et al., 1992; 

Martin et al., 1996b). Fig 2.C shows, each repeating segment is made up of 7 

anatomical types of motor neurons: dorsal excitatory (DE1, DE2 and DE3), dorsal 

inhibitory (DI), ventral excitatory (V1 and V2), ventral inhibitory (VI). Among these 

types, some of the motor neurons namely DE1, VI, V1 and V2 are paired. Hence, 

there are a total of 11 motor neurons in each segment. In addition to motor neurons, 

there are 6 large interneurons all along the length of ventral cord to innervate 

excitatory motor neurons of the dorsal and ventral muscle. Each segment also has 

three commissures or communicating axons on the right side and one on the left 

side of the worm.  
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Fig. 2. A. Photograph of a female A. suum worm. B. The head region of Ascaris 

showing the mouth region containing lips, the position of nerve ring and origin of 

dorsal and ventral nerve cord (Crompton and Joyner, 1979). C. The repeating motor 

neuron segments in Ascaris (Martin et al., 1996b). The cell bodies of motor neurons 

A 

C B 
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(excitatory and inhibitory) arranged in the ventral nerve cord. The commissures 

originating from the ventral nerve cord project into dorsal nerve cord. 

 

2.5 Resting membrane potential of Ascaris muscle cells 

The resting membrane potential Ascaris muscle cells was -30 to -35 mV with a 

resting conductance of 2 to 3 µS from electrophysiological recordings in Artificial 

Perienteric Fluid, APF (DeBell et al., 1963; Del Castillo et al., 1963b; del Castillo et 

al., 1964a; Brading and Caldwell, 1971a; Wann, 1987; del Castillo et al., 1989). The 

resting membrane potential was also dependent on the temperature of the bath 

solution. Lowering the bath temperature to  20°C caused the resting potential to 

reach −29.9 mV while an increase in the temperature of the bath to 37°C caused 

the resting potential to reach more negative values, −33.8 mV (Wann, 1987). The 

internal ionic concentrations of Ascaris somatic muscle observed were, K+ 99.4 ± 

2.8 mM, Na+ 48.6 ± 2.4 mM, Cl-13.7 ± 1 mM as reported by Brading and Caldwell 

(1971a). The resting membrane potential of Ascaris showed relative sensitivity to 

changes in the extracellular concentrations of anions rather than cations. A relative 

insensitivity of resting membrane potential was observed to changes in the 

composition of extracellular Na+ and K+.  Changing the extracellular concentration of 

Cl- affected the resting membrane potential. A ten fold increase in extracellular 

chloride concentration resulted in 12 mV change in resting membrane potential.  
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Under normal conditions, the resting membrane potential remains stable, 

occassionally interrupted by rhythmic spontaneuous activity originating from the 

syncytium (Brading and Caldwell, 1971a). 

2.6 Rhythmic spontaneous activity of the muscle cell  

The rhythmic spontaneuous activity of the Ascaris muscle cell includes spikes, slow 

waves and a modulatory waves (Fig 3 A, B and C). Spontaneuous activity is 

generated at the level of muscle syncytium and is conducted all along the arms to 

reach the bag region and later to the contractile spindles (Weisblat, 1976; Weisblat 

and Russel, 1976). External application of d-tubocurarine did not completely bIock 

the firing of spike potentials and confirmed these spontaneous active preparations 

are myogenic in origin (Del castillo et al., 1963a). The syncitium in spontaneously 

active preparations is maintained in depolarized state by continuous release of 

small quantities of ACh. Excitatory (cholinergic) and inhibitory (GABAergic) nerve 

fibers control the membrane potential of the syncitial membrane and hence, the 

frequency of spike firing. Spike potential amplitudes observed from the muscle bags 

were dependent on the proximity of the muscle cell to nerve cord, the concentration 

of extracellular calcium and the temperature of the bath (DeBell and Sanchez, 

1968). Depolarizations as high as 60 mV were recorded from the Ascaris muscle 

bag region which had a resting membrane potential of -30mV.  

Spikes were described as brief repeating action potentials had an amplitude of 

greater than 5mV. Spikes were observed as single action potentials which lasted 

less than 0.5sec. Occassionally several single action potentials joined to form 
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clusters that lasted upto 1.5 seconds. The spikes in Ascaris show complexity in 

shape, amplitude and duration, Fig 3.C (Weisblat, 1976). They are dependent on 

extracellular Ca++ and not Na+ and they were blocked by lanthanum and cobalt 

(Weisblat, 1976). Spike potential is thought to involve activation of voltage activated 

calcium currents during their rapid rise and voltage-activated potassium currents 

during their rapid decline (Thorn and Martin, 1987; Martin et al., 1992) and calcium-

activated chloride currents during slow decline before reaching  recovery (Turner, 

2001). 

      

 

Figure 3. shows three different spontaneous activities observed in the Ascaris 

somatic muscle cells placed in APF (Weisblat, 1976). A. Modulatory waves which is 

further expanded in time scale to observe slow waves (B and C). Many spikes are 

A 

B 

C 
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seen on the slow wave in C. The calibration 10 mV x 12 s in A, 10 mV x 1 s in both 

B and C.  

 

Apart from spikes, Ascaris muscle also produces slow waves (100-1000 ms) shown 

in Fig 3. B and long lasting modulatory waves (3-20 ms) shown in Fig. 3. A. The 

slow waves were dependent on both sodium and calcium. The slow waves and 

spikes are modulated at the level of muscle syncytium through the involvement of 

neurotransmitters namely GABA and ACh (del Castillo et al., 1989). The syncytial 

membrane acts like an amplifier to boost the signal generated by the nervous 

system to further transmit the signals through the arms to the bag and the 

contractile spindle. Piperazine (100 µM, 5 min) is known to decrease the amplitude 

of the spike potentials and quietens the preparations by causing hyperpolarization 

(up to 15mV) of the muscle cell. The actions of piperazine is similar to the effects of 

the inhibitory neurotransmitter (GABA) or activation of inhibitory fibres of the ventral 

nerve cord (Del castillo et al., 1963a; Del Castillo et al., 1963b; Delcastillo et al., 

1963; del Castillo and Morales, 1967b; del Castillo et al., 1989). 

 

2.8 Anaerobic metabolism resulting in excretion VFAs 

Gastrointestinal nematodes metabolize carbohydrates through anaerobic 

metabolism to excrete large quantities of organic acids as their end-products 

(Komuniecki et al., 1987). These include acetate, propionate, butyrate, 2-
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methylbutyrate, valerate and 2-methylvalerate. Major quantities of organic acids are 

excreted from the somatic muscle cells. Electrophysiological studies have revealed 

presence of a large conductance, voltage-sensitive, calcium dependent chloride 

channel on the somatic muscle membrane (Dixon et al., 1993; Valkanov et al., 

1994; Valkanov and Martin, 1995; Robertson and Martin, 1996)  and also on 

hypodermis (Blair et al., 1998). These ion channels not only permeable chloride 

ions but also organic acids. The mechanisms that underlie excretion of organic 

acids by nematodes have been studied and modeled. From the model, organic 

acids produced by muscle cells diffuse outward through the calcium dependent 

chloride channel to accumulate in pseudocoelomic fluid that surrounds the muscle. 

The organic acids once accumulated in the pseudocoelom get eliminated through 

the intestine (Harpur and Popkin, 1973) and the small canals in the lateral line of the 

hypodermis (Thompson, 1996). The other important route is to diffuse across the 

calcium dependent chloride channels of the hypodermis which is thought to form a 

low resistance pathway. Organic acids after crossing the hypodermis exit the worm 

through pores found in the cuticle (Ho et al., 1990; Sims et al., 1992). 

 

2.9 Locomotion in Nematodes 

The outer cuticle in nematodes maintains a constant diameter of the body while 

allowing flexibility along the longitudinal axis. Circular muscle is absent in 

nematodes. The somatic muscle consists of obliquely arranged longitudinal muscle 

fibers. The contraction occurring in dorsal and ventral musculature sequentially, 



www.manaraa.com

27 

 

never simultaneously, results in body bends. Along the length of the worm at any 

position a bend is generated as a result of contraction of dorsal or ventral muscles 

with simultaneous relaxation of opposing muscles. This generates a sinusoidal 

wave containing alternating series of dorsal and ventral bends (dorsoventral, 2-D 

plane). The electrical activation by the dorsal and ventral nerve cords on to the 

somatic muscle happens sequentially but never overlaps. The waves are generated 

both in forward or reverse directions and allows worms to swim in both directions as 

seen in C.elegans (Stretton et al., 1992).   

 

2.10 Host invasion 

Parasitic nematodes get into the host ecosystem either by direct ingestion of the 

eggs (Ascaris) or through an arthropod vector (Brugia, Onchocerca) or actively 

invading through the skin (Ancylostoma). Despite a varied routes of infection, the 

parasite once enters the host has to adapt quickly to the internal environment of the 

host. The host internal environment includes temperature, pH, osmotic pressure 

and other site specific factors (like bile, trypsin in small intestine). Although, these 

factors provide a barrier to some extent, it is also thought to give unique cues to the 

parasite that are not found in the intermediate host or in the external environment. 

The cues initiate behavioral, biochemical changes that allows the parasite to 

develop, integrate and adapt to the host internal environment (Roberts and Modha, 

1997). The life cycle of Ascaris suum, the round worm of pigs starts once eggs are 

ingested by the host (Fig.4). The infective eggs are oval shaped, thick-shelled 
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protected with a sticky external coat to survive in the external environment. The 

eggs are laid in the one-celled stage which later develops into the infective stage 

(L2) inside the egg. The hatching of the egg in the small intestine of the host leads 

to the release of second stage (L2) larvae. If the host (pig) ingests infected 

paratenic hosts (earth worms and rodents) then, L2s are released during the 

digestion in the small intestine. The L2 juveniles after hatching penetrate the 

intestinal mucosa to enter into the portal circulation of the liver (within 24 hours). In 

liver, L2s moult into L3 juveniles and later enters into the systemic circulation. From 

the blood stream, the larvae traverse to the lungs via pulmonary arteries (by 4 to 6 

days after infection). The L3 larvae penetrate the lung tissue to reach pulmonary 

capillaries and later into alveoli of the lung (2 weeks post infection). If the larvae 

dies within the lungs results in a serious "Ascaris pneumonia". The larvae ascend 

the bronchial tree to the reach the throat, and are swallowed during coughing. The 

L3 larvae once re-ingested and arrive in to the small intestine to complete their 

development (L3 to L4 to adults). It takes about 2-3 months for this cycle to 

complete starting from ingestion of the infective eggs to the adult Ascaris. The adult 

worms can reproduce and live 1- 2 years in the intestine. The egg production is 

intermittent and up to 200,000 eggs per day are produced by female worms which 

are then passed in the host feces. The contaminated feces with eggs form a route 

of infection to other hosts or paratenic hosts. These eggs survive for a long time in 

the farm as a reservoir of infection to the neighboring hosts.  
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Fig 4. A. The pig parasitic round worm eggs are passed in feces of the vertebrate 

host (pig). These eggs B are rough, oval, thick shelled with a sticky coat. The egg 

develops into L1 and later into L2 shown in C. The development of L1 and L2 occur 

within the eggshell. These larvae when ingested by earth worms or dung beetles, 

the causes hatching of the egg to release L2 in the paratenic host D. Either egg or 

paratenic host forms source of infection when ingested by the vertebrate host E. L2 

larvae released in small intestine F, migrates to liver G and the L2 larvae molt to L3 

in liver. L3 larvae migrate from liver to lung H further migrates to trachea I and later 

get re ingested to reach small intestine. In the small intestine, L3 molts to L4 and to 

immature adult worms. The above diagram is taken from http://cal.vet.upenn.edu/. 
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2.11 Nematode neurotransmitters and their receptors  

2.11.1 Acetylcholine  

Acetylcholine (ACh) was identified as a neurotransmitter in 1920’s in vertebrates. 

Three decades later ACh was isolated from Ascaris. Later ACh was found to 

produce contractions of A. suum somatic muscle (Baldwin and Moyle, 1949; 

Mellanby, 1955). ACh was later suggested to be present at the neuromuscular 

junctions of Ascaris somatic muscle (Del castillo et al., 1963a; Del Castillo et al., 

1967). Identification of the enzyme cholineacetyltransferase in excitatory motor 

neurons confirmed ACh was indeed the excitatory neurotransmitter (Johnson and 

Stretton, 1985). When ACh was perfused on the muscle bags of Ascaris, it elicited 

depolarization and increase membrane conductance (Colquhoun et al., 1991). 

Later, Colquhoun et al described the relative potency of ACh by comparing to 

vertebrate nicotinic and muscarinic agonists on the Ascaris muscle. The rank order 

potency includes,  

Metahydroxy phenyl propyl trimethylammonium (HPPT) > Dimethyl phenyl 

piperazinium (DMPP) > ACh > carbachol > nicotine > trimethylammonium (TMA) > 

muscarone > furtrethonium > arecoline.  

Similarly, the rank order potency of vertebrate nicotinic and muscarinic antagonists 

to inhibit the ACh responses were tetraphenylphosphonium (TPP) > quinacrine > 

pancuronium ~ curare > trimethaphan > atropine > chlorisondamine ~ 

decamthonium > hexamethonium > dihydro-β-erythroidine.   
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Classically in vertebrates ACh activates two distinct acetylcholine receptors; 

nicotinic (activated by nicotine) and muscarinic (activated by muscarine). Nicotinic 

receptors are ligand gated ion channels while, muscarinic receptors (mAChRs) 

belong to G-protein coupled receptors (GPCRs). 

 

2.11.2 Nicotinic acetylcholine receptors (nAChRs) 

The nicotinic acetylcholine receptors (nAChRs) mediate synaptic transmission at 

the neuromuscular junction of vertebrates and invertebrates (Changeux and 

Edelstein, 1998). Changeux et al (1970) first purified nAChR from the electric eel 

(Electrophorus electricus). A decade later sequence information of nAChR was 

described (Sumikawa et al., 1982; Miledi et al., 1983). Apart from neurons of 

vertebrates, the nAChRs are also found to be present in non-neuronal cells namely 

epithelial cells of bronchi, endothelial cells of the arteries, macrophages, and 

keratinocytes of the skin (Macklin et al., 1998; Bruggmann et al., 2002). This implies 

a much broader functional significance of nAChRs than envisioned earlier. Neuronal 

nAChRs are also involved in learning and memory (Cordero-Erausquin et al., 2000). 

Selective drugs targeting neuronal nAChRs have been proposed to benefit the 

treatment of disorders like schizophrenia (Pereira et al., 2002), Parkinson’s disease, 

Alzheimer’s disease and in the control of pain (Rashid and Ueda, 2002). 

All nAChRs are made up of 5 subunits arranged around a central pore forming a 

non-selective cation channel (Fig. 5). Each subunit has extracellular N and C-

terminals, four transmembrane spanning domains (M1 to M4) with M2 lining the pore 
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and a cytoplasmic domain between M3 and M4 for anchoring and modulation of the 

ion channel. The subunits include α-subunits which differ from non-α subunits by 

having vicinal (neighboring) cysteines on the extracellular N-terminal loop. The 

vicinal cysteines are important for ACh binding to open the channel. The nAChR 

pentameric ion channel is formed by two or more alpha subunits and three or less 

non alpha subunits. There is a cys-loop formed by disulphide bonds between two 

cysteines separated by 13 highly conserved amino acid residues. The cys-loop is 

unique to the α-subunits not found in non α-subunits. The α-subunits of nAChRs, 

GluCls and GABA gated chloride channels contain cys-loop, hence they are 

referred to as cys-loop receptors (Zouridakis et al., 2009).     

In vertebrates nAChRs can be divided into skeletal muscle and CNS/neuronal 

nAChR types. The adult skeletal muscle nAChRs are made up of two alpha 

subunits, and 3 non-α subunits. These non-α subunits include β, γ and δ subunits 

(Mishina et al., 1986; Boyd, 1997; Hogg et al., 2003). The alpha subunits are 

essential for binding of ACh and there are a minimum of two ACh binding sites on 

the nAChR. The neuronal nAChR can be homomeric where the channel is made up 

of single type of alpha subunits (example α7 nAChRs) or it can heteromeric which is 

made up of two alpha subunits (example α2β3 nAChRs) or more than two alpha 

subunits (example α3β2 nAChRs). The homomeric or heteromeric receptors differ 

from each other in their pharmacological properties (Boyd, 1997; Paterson and 

Nordberg, 2000; Robertson and Martin, 2007).   

Interestingly, the genomics of C. elegans reveals an extensive and diverse nicotinic 

receptor gene family. There are about 27 nAChR subunit genes encoding nAChR 
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subunits in C.elegans forming the largest gene family when compared to 17 nAChR 

subunit genes in mammals and birds. The functional significance of possessing a 

large number of genes encoding nAChRs is yet to be elucidated. In Ascaris, 

originally the nicotinic acetylcholine receptors are thought to be present only at the 

synapse(Del castillo et al., 1963a), but later it was identified that the receptors are 

present extrasynaptically on the bag region of the muscle (Brading and Caldwell, 

1971a; Martin, 1982a; Harrow and Gration, 1985).  

In C.elegans based on the sequence similarity, subunit proteins of nAChR have 

been classified into five groups. These include UNC-29 group, UNC-38 group, ACR-

8 group, ACR-16 group and DEG-3 group (Mongan et al., 1998; Sattelle et al., 

2002; Jones and Sattelle, 2004). Among the subunits, alpha subunits of nAChRs of 

the C. elegans somatic muscle include ACR-8, ACR-16, UNC-38, UNC-63 and 

LEV-8. The non-alpha subunits of nAChRs of the C. elegans muscle include LEV-1 

and UNC-29. Apart from the nAChRs that are present on the C. elegans muscle, 

nAChRs are also expressed in sensory neurons which includes DEG-3 group 

(Fleming et al., 1997; Culetto et al., 2004; Rand, 2007).   

Electrophysiological studies reveal two pharmacologically distinct nAChRs on the 

body muscle of C. elegans; levamisole sensitive receptors and nicotine sensitive 

receptors. These nAChRs receptors were expressed in Xenopus oocytes and 

studied under voltage clamp. For reconstituting a levamisole sensitive (nicotine 

insensitive) in Xenopus oocytes, 8 genes were found be required. Among them, 5 

genes encode for the levamisole receptor subunits which include; three α subunits 

namely lev-8, unc-38 and unc-63, two non- α subunits namely lev-1 and unc-29 
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(Fleming et al., 1997; Culetto et al., 2004). Three genes encoding for ancillary 

proteins namely, ric-3, unc-50 and unc-74 were found to be essential for expressing 

levamisole sensitive nAChRs. The RIC-3 is a transmembrane protein of 

endoplasmic reticulum acts as chaperone to promote receptor folding, assembly or 

maturation. The UNC-50 encodes a transmembrane protein of Golgi complex, 

prevents lysosomal targeted destruction of the subunits of levamisole sensitive 

nAChR during intracellular trafficking. The UNC-74 is thioredoxin containing protein 

found to be required for trafficking the nAChR subunits to the synapses. For further 

reading please refer to Boulin et al (2008).  

Interestingly enough, two subunits of the levamisole sensitive receptors of Ascaris 

namely, UNC-38 and UNC-29 subunits were expressed in Xenopus oocytes. The 

expression did not involve addition of genes ric-3, unc-50 and unc-74 that encode 

for ancillary proteins. When cRNAs encoding UNC-38 and UNC-29 subunits were 

added in the ratio of 1:5 resulted in a nAChR where levamisole was more potent 

agonist than nicotine. When the ratios of cRNAs encoding UNC-38 and UNC-29 

subunits were reversed to 5:1, resulted in a nAChR where nicotine was more potent 

agonist than levamisole (Fleming et al., 1997; Williamson et al., 2009).      

The nicotine sensitive (levamisole insensitive) nAChRs in C. elegans are homomers 

made up of five ACR-16 alpha subunits (Francis et al., 2005; Touroutine et al., 

2005). Loss of function studies involving mutations of ACh-16 subunit resulted in 

loss of the muscle nicotine sensitive receptor in C.elegans.  

Unlike C. elegans muscle that possesses pharmacologically distinct nicotine 

sensitive or levamisole sensitive nAChRs, the story is different in the parasitic 
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nematode Ascaris. Electrophysiological studies have revealed 3 nAChR subtypes in 

A. suum somatic muscle. This pharmacological characterization is based on the 

preferential selectivity of agonists namely, nicotine (N-subtype), levamisole (L-

subtype) and bephenium (B-subtype). Unlike pharmacologically distinct C.elegans 

muscle nAChRs, the three subtypes of nAChRs in Ascaris somatic muscle show an 

overlapping pharmacology. A high concentration of a nAChR agonist (for example 

levamisole) can activate all the 3 subtypes of Ascaris muscle nAChRs. This 

overlapping pharmacology has been revealed in Ascaris muscle contraction studies 

(Robertson et al., 2002) and single channel recordings from the bag region of the 

muscle (Levandoski et al., 2005; Qian et al., 2006). Single channel recordings on 

the bag region of the muscle showed three mean conductance states of nAChRs of 

Ascaris muscle; small (25pS, N-subtype), intermediate (35pS, L-subtype) and large 

(45pS, B-subtype). Further experiments extended the observations on other 

cholinergic anthelmintics and antagonists on Ascaris muscle. The N-subtype was 

activated by oxantel, methyridine; L-subtype by pyrantel and competitively 

antagonized by paraherquamide; B-subtype was competively antagonized by 

paraherquamide and derquantel. The anthelmintic thenium was found to be less 

selective between L or B subtypes (Robertson et al., 2002; Martin et al., 2003; 

Martin et al., 2004; Martin and Robertson, 2007).  

Interestingly, nAChRs that gate anions namely chloride has also been described in 

C.elegans. They are referred to as ACh gated chloride channels (ACCs). There are 

4 subunits has been identified namely ACC-1, ACC-2, ACC-3 and ACC-4. Some of 

these subunits namely, ACC-1s or ACC-2s can be assembled into homo pentamers 
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in Xenopus. The pattern of expression and function of these ion channels is yet to 

be understood (Putrenko et al., 2005). 

 

 

 

Fig 5. A. The cartoon represents nicotinic acetylcholine receptor containing five 

subunits. The α-subunits contain vicinal cysteines that are important for ACh 

binding (Sattelle et al., 2002; Jones and Sattelle, 2010). The cys loop is also seen 

on the α-subunit. B. The subunit composition of homo pentameric C. elegans 

nicotine sensitive nAChR. The subunit composition of hetero pentameric  
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levamisole sensitive nAChR from C. elegans (C) and Ascaris (D) (Raymond et al., 

2000; Boulin et al., 2008; Williamson et al., 2009; Wolstenholme, 2011).   

 

Ryanodine receptor in nematodes   

Apart from the nAChRs which are present on the muscle cell membrane permeable 

to calcium, there are intracellular ryanodine receptors (RYRs) on the sarcoplasmic 

reticulum. Ryanodine receptors function as calcium channels of the sarcoplasmic 

reticulum to release calcium in to the cytosol in response to an influx of calcium 

through nAChRs on the membrane. RYRs gate the sarcoplasmic reticulum, a 

calcium reservoir of the nematode somatic muscle. Ryanodine receptors were first 

identified as they were bound strongly to the alkaloid ryanodine (Bennett et al., 

1996). Hence, these receptors were named after the alkaloid ryanodine as RYRs. 

Unlike nAChRs which are pentamers, ryanodine receptors are homotetramers 

made up of UNC-68 subunits encoded by a single gene unc-68 in C. elegans 

(Maryon et al., 1996). The addition of ryanodine to C. elegans produced phenotypes 

with  incomplete hypercontractive paralysis (Kim et al., 1992). Interestingly a similar 

effect has not been observed with ryanodine on the Ascaris suum muscle strips. In 

C. elegans the action of ryanodine on ryanodine receptors have been observed 

using single channel studies when the UNC-68 subunits were expressed on planar 

lipid bilayers. In these studies, ryanodine locked the RYRs in a sub-conductance 

state (partially open) emptying the sarcoplasmic calcium stores (Kim et al., 1992).  

In addition to calcium, there are other ligands like caffeine which acts as agonist at 

RYRs. The contribution of RYRs to muscle contractions has been studied in 
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C.elegans.  

These studies infer that RYRs play a supportive role but not a main role in 

excitation-contraction coupling (Kimball et al., 1996; Maryon et al., 1996). The UNC-

68 null mutants in C. elegans were found to have nearly normal body muscle 

although, carried  some defects associated with pharyngeal pumping, reduced 

locomotor activity and slow growth when compared to that of wild-type (Maryon et 

al., 1996). A reduction in the RYRs function (unc-68 null mutants) in parasitic 

nematodes has been predicted to reduce the response to treatment with nicotinic 

anthelmintics like levamisole, pyrantel and also contribute for drug resistance 

(Puttachary et al., 2010). Worms that are resistant to levamisole accompanied by a 

reduced RYR function might still survive in spite of some locomotory defects.   

 

2.11.3 G-protein coupled ACh receptors (GARs)  

The existence of G-protein coupled ACh receptors (GARs) in C. elegans was first 

reported in 1983 (Culotti and Klein, 1983). Subsequently alternative splicing 

revealed that there are 3 genes that encode GARs,  gar-1 (Park et al., 2000), gar-2 

(Suh et al., 2001) and gar-3 (Park et al., 2003). Green fluorescence protein (GFP) 

constructs showed the expression pattern of GARs in C. elegans. GAR-1 was found 

to be expressed in sensory neurons in the head and also in the posterior ventral 

microtubule cell (PVM) neuron. Atypical pharmacological characteristics of GARs 

have been observed. GAR-1s were coupled to the inhibitory subunit of Gi proteins 

and showed binding to atropine, but not to scopolamine. GAR-2 coupled to the Gi 
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family was found to be expressed in sensory neurons in head, ventral cord motor 

neurons and hermaphrodite specific motor neurons (HSN). The pharmacology 

showed GAR-2 bound neither to atropine nor to scopolamine. GAR-3s were 

expressed in pharyngeal muscles (highest in the terminal bulb), ventral cord motor 

neurons and the SAB interneurons. GAR-3s showed pharmacology similar to 

conventional vertebrate muscarinic receptors such as binding to scopolamine and 

carbachol. GAR-3s in C. elegans play a role in regulation of membrane potential 

and excitation-contraction coupling in pharyngeal muscle. GAR-3s were found to be 

required for normal feeding behavior as they regulate pharyngeal pumping (Steger 

and Avery, 2004; Rand, 2007). 

The parasitic nematode Ascaris GARs have been found to be expressed in head 

and tail of adult worms (Kimber et al., 2009). Though, A. suum GAR-1 (AsGAR-1) 

showed a high structural homology with C.elegans GAR-1, they exhibited an 

atypical pharmacology. The rank order potency of agonists of AsGAR-1 showed 

ACh (EC50 20.3 µM) > carbachol ~ arecoline > oxotremorine > bethanechol > 

pilocarpine. The rank order potency series of antagonists on AsGAR-1 includes 

promethazine > mianserine > atropine > propranolol > spiperone > pirenzepine > 

cimetidine > scopolamine > diphenhydramine. Atypical pharmacology of AsGARs 

coupled with their role in sensory perception, locomotion, pharyngeal pumping and 

reproduction have made them attractive drug targets.  
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2.11.4 γγγγ-amino butyric acid (GABA)   

γ-Amino butyric acid (GABA) was identified in the mammalian central nervous 

system in the 1950’s and was initially described as factor-I (I represents inhibitory 

action on neuronal activity). A decade later factor-I was identified as amino acid 

neurotransmitter GABA. GABA was synthesized from the decarboxylation of 

glutamate catalyzed by the enzyme glutamic acid decarboxylase (Bowery and 

Smart, 2006). Application of GABA (5-10 µM) resulted in hyperpolarization of the 

Ascaris muscle (10 to 20 mV) and muscle relaxation (Martin, 1982a; Martin et al., 

1991; Martin, 1993) accompanied by an increased chloride conductance (Holden-

Dye et al., 1989). Application of GABA also abolished rhythmic spontaneous action 

potentials in the Ascaris somatic muscle (Martin, 1980). Apart from the 

neuromuscular junctions in nematodes, similar to nAChRs, GABA gated chloride 

channels were found extrasynaptically on A. suum somatic muscle bags (Martin, 

1980).  The anthelmintic drug piperazine mimicked GABA in its action (del Castillo 

et al., 1964c). But, single channel recordings on Ascaris muscle involving GABA 

and piperazine showed some difference in mean open-times of GABA gated 

chloride channel. GABA produced mean open times of 32 ms while piperazine 

induced much shorter mean open-times of 14 ms on the GABA channels (Martin, 

1985). 

GABA immunoreactivity was concentrated in the inhibitory motor neurons in Ascaris 

somatic muscle (Johnson and Stretton, 1987). In C.elegans, GABA produced 

inhibition of somatic muscle contractions and foraging rather interestingly, excited 
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enteric muscles that are involved in defecation (McIntire et al., 1993). Holden-Dye et 

al (1989) found dihydromuscimol, a GABA agonist in vertebrates to be more potent 

(7.5 times) than GABA in Ascaris. But potent vertebrate GABAA antagonists namely 

pitrazepine, securinine, bicuculline, RU5135and SR95531 produced little effect on 

GABA receptors. These observations suggested that although there were some 

similarities of Ascaris GABA receptors to the vertebrate GABAA receptor, they 

possessed different pharmacology (Holden-Dye et al., 1989; Martin et al., 1991). 

 

2.12 Nematode neuropeptides  

Nematodes possess anatomically simple nervous system that comprise about 300 

neurons. But, they are chemically complex in terms of their secretory products. 

Nematode nervous system is known to secrete more than 250 different 

neuropeptide signaling molecules (Marks and Maule, 2010). Neuropeptides are 

short sequences of amino acids synthesized, co-localized in neurons similar to the 

neurotransmitters and are released at the nerve terminals. Specific genes are 

involved in the production of neuropeptides. Neuropeptides are synthesized in 

neuronal cell bodies as pro-peptide precursors and then encapsulated in vesicles 

for further processing. The matured (dense core) vesicles are then transported 

along the axon to reach nerve terminals for their release. The neuropeptides 

released at the nerve endings modulate synaptic activity either by directly binding to 

their own receptors or indirectly affecting neurotransmitter receptors by modulating 

their functions (Li and Kim, 2008). The neuropeptides fall into two major groups: the 
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insulin-like peptides (ILPs) and the FMRFamide (Phe-Met-Arg-Phe-NH2)-like 

peptides (FLPs). Other minor groups of neuropeptides include non-insulin and non-

FLP peptides are included in a separate group called neuropeptide-like proteins 

(NLPs). Nematodes possess largest family of genes among the invertebrates that 

encode more than 250 distinct neuropeptides. Currently, in C. elegans, 38 ins, 43 

nlp, and 32 flp genes have been documented. Similar complexity is predicted to 

exist in parasitic nematodes (McVeigh et al., 2006; McVeigh et al., 2008; Marks and 

Maule, 2010).  

Insulin-like growth factors are key hormones in mammals regulating metabolism, 

growth and differentiation. Interestingly enough, nematodes possess more than 76 

insulin-like peptides (ILPs). Some of their known functions in C. elegans include fat 

metabolism, aging and diapause (Kawano et al., 2000; Kawano et al., 2003). In 

addition to ILPs in nematodes there are about 124 neuropeptide like proteins 

(NLPs) encoded by 43 nlp genes. These NLPs belong to a diverse group that 

possess little similarity among each other (McVeigh et al., 2006). NLPs are 

implicated in multiple C. elegans social behaviors (de Bono and Bargmann, 1998). 

In the present review, I have focused on FLPs especially the neuropeptide AF2 that 

I have used in my research.  
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2.12.1 FMRFamide like peptides (FLPs)  

Nematode FMRFamide-like peptides (FLPs) are among the diverse regulatory 

neuropeptides seen in invertebrates. An older term FMRFamide is still continued in 

its usage which refers to the common sequence of Phe-Met-Arg-Phe-amide at their 

C-terminal encoded by specific FLP. After identifying several FLPs, the common 

sequence found to end in Arg-Phe-NH2 (–RFamide) peptides. In contrast to the 

vertebrate–RF amides which have restricted distributions with focused roles, 

nematode FLPs have broader roles in nervous system by influencing muscle, 

motorneurons, behaviour and sensory functions (McVeigh et al., 2006). The flp 

gene complements are largely comparable across the nematodes. Some 

neuropeptides isolated from Ascaris or C. elegans or other invertebrates exert their 

effects in other nematodes across the phylum (Mousley et al., 2004; Mousley et al., 

2005). In C. elegans so far 30 distinct genes designated as flp-1 to flp-28, flp-32 and 

flp-33 have been identified.  

In parasitic nematodes, PCR-based  cDNA  analysis  of  expressed  sequence  tags 

identified 290 distinct FLPs (Mousley et al., 2005). Immunocytochemical localization 

studies of neuropeptides revealed FLP immunoreactivity in all main nematode 

neural structures. In Ascaris the immunoreactivity studies indicated the expression 

in nerve ring, somatic and enteric nervous systems including motor, sensory and 

interneurons (Cowden et al., 1993; Brownlee et al., 1996). In the nomenclature of 

FLPs, the first letter refers to species from which FLP was first isolated.  For 

example in neuropeptide AF2 and PF1, the first letters A- refers to A. suum while, 
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P- refers to Panagrellus redivivus. The second letter refers to type of neuropeptide, 

in this case FMRFamide like peptides (FLPs). The number refers to the 

chronological order of discovery within the species of nematode. For example, AF2 

is a heptapeptide, A-referring to Ascaris, F-refers to FLP neuropeptide, 2-refers to 

the second neuropeptide isolated in A. suum. Selected FLPs and their actions on 

Ascaris muscle and pharyngeal peristalsis (induced by serotonin) have been listed 

in the Table 1.   
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Table 1. Modified from McVeigh et al (2006) showing responses to FLPs in Ascaris 

somatic and pharyngeal muscle.  

Gene Peptide sequence Peptide 

name 

Ascaris 

muscle 

Ascaris 

pharyngeal 

peristalsis 

Electrophysiology 

flp-1 KPNFIRFa PF4 Fast 

inhibitory 

    

  SDPNFLRFa PF1 Slow 

inhibitory 

↓   

  SDIGISEPNFLRFa AF11 Slow 

inhibitory 

↓ DE2↑Rin↓EPSP↑; 

DI↑Rin↓ 

flp-4 SGKPTFIRFa AF5 excitatory   DE2↑Rin↓EPSP↑; 

DI↓Rin↓ 

flp-6 KSAYMRFa AF8/PF3 Excitatory 

on ventral 

muscle. 

Inhibitory 

on dorsal 

muscle. 

↓ DE2↓Rin↓EPSP↓; 

DI↑↓Rin↓ 

flp-8 KNEFIRFa AF1 biphasic ↓ DE2↑Rin↓EPSP↑; 

DI↓Rin↓ 

flp-

14 

KHEYLRFa AF2/PF5 biphasic No effect DE2↑Rin↑↓; DI– 

Rin↓ 

flp-

18 

AVPGVLRFa AF3 excitatory No effect DE2↑Rin↑EPSP↑; 

DI– Rin↓ 

  GDVPGVLRFa AF4 excitatory No effect DE2↑Rin↑EPSP↓; 

DI↓Rin↓ 

  GFGDEMSMPGVLRFa AF10 excitatory   DE2↑Rin↑; DI– Rin↓ 
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flp-

21 

GLGPRPLRFa AF9 excitatory   DE2↑EPSP↑; 

DI↓Rin↓ 

flp-

29 

ILMRFa AF16   No effect DE2– EPSP↓; DI– 

  FDRDFMHFa AF17 excitatory   DE2↓Rin↓EPSP↓ 

EPSPa↓; DI↓Rin↓ 

 

Table 1 abbreviations: These electrophysiological studies were conducted on 

dorsal excitatory (DE2), dorsal inhibitory (DI) motor neurons of A. suum. The effects 

on the somatic muscle are denoted here as hyperpolarizing (↓), depolarizing (↑) or 

negligible effect (–). The effects on pharyngeal peristalsis are denoted as increase 

(↑), decrease (↓) or no effect. The electrophysiology on motor neuronal (excitatory, 

DE2 or inhibitory, DI) input resistance (Rin) are denoted here as increase (↑), 

decrease (↓), biphasic (↓↑) effect. The frequency of excitatory postsynaptic potential 

frequencies (EPSPs) generated by motor neurons is denoted as increase (↑) or 

decrease (↓). EPSPa represents changes in the EPSP amplitude (McVeigh et al., 

2006).  

 

2.12.2 Processing FLPs and signal transduction  

Specific flp genes control the transcription of FLPs, initiates the synthesis of large 

propeptides. This propeptides may contain a single copy of individual FLP peptides 

or even copies of multiple distinct FLP peptides. These propeptides containing an 

individual FLP are encoded along with glycine extensions which contain cleavage 

Table 1. Continued 
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sites. Processing of the immature propeptide happens on the way to the synapse. 

The N-terminal signal peptide sequence of the propeptide is important for directing 

the FLP to go through the secretory pathway for the synaptic release of the mature 

peptide. The C-terminal of the propeptide is necessary for the hydrolytic cleavage 

involving enzymes namely, subtilisin like pro-protein convertases (SPCs). The C-

terminals of the propeptide are further acted upon by carboxy-peptidases which 

cleave some of the dibasic residues before entering into the next step of amidation. 

The amidation of C-terminal confers the activity of FLPs and those peptides which 

are not amidated are functionally inactive. Later, FLPs released from the nerve 

terminals into the synapse for interacting with specific FLP receptors of the post-

synaptic membrane. The signal is terminated by enzymatic destruction of peptide by 

enzymes including neprilysin-like zinc metalloendopeptidases, aminopeptidases 

and deamidases (McVeigh et al., 2006).  

 

2.12.3 FLP receptor studies 

Fig 6 shows that FLPs mostly signal through specific G-protein coupled receptors 

(GPCRs). The GPCRs of FLPs contain five subtypes (X1-X5) coupled with different 

downstream second messenger pathways. The activation of GPCRs X1 and X2 by 

AF1 and AF2 results in Gα mediated activation of adenylate cyclase to elevate the 

cAMP levels (Reinitz et al., 2000; McVeigh et al., 2006). The elevated cAMP levels 

after application of AF2 have been shown to increase the glycogen metabolism 

(Rex et al., 2004a; McVeigh et al., 2006). AF1 and AF2 application on the somatic 
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muscle of Ascaris results in a biphasic response (initial hyperpolarization followed 

by excitation / contraction). AF2 after a brief application following a short duration 

wash has shown to produce long lasting potentiation of nAChR responses (Trailovic 

et al., 2005). However, elevated cAMP levels after application of some FLPs did not 

correlate with the contractions of the body muscle suggesting these events are 

independent of each other. PF1 activates X5- GPCR present on the hypodermal 

membrane and leads to Gα mediated activation of a calcium channel causing a 

calcium influx. The increased calcium levels in hypodermis further activate nitric 

oxide synthase resulting in increased nitric oxide production. The nitric oxide 

produced in hypodermis diffuses into the pseudocoelomic fluid. Nitric oxide from the 

pseudocoelomic fluid later enters the somatic muscle to produce muscle relaxation 

(McVeigh et al., 2006). GPCRs X3 and X4 are coupled to Gα that inhibits adenylate 

cyclase to decrease cAMP levels. GPCR X3s are activated by AF3 while, GPCR 

X4s are activated by AF5, AF7, AF11, AF17, AF19 and PF1. Activation of GPCR X3 

caused a contraction of somatic muscle while, activation of GPCR X4 caused 

muscle relaxation resulting in increased body length of the worms.  

Unlike other neuropeptides which activate GPCRs, PF4 neuropeptide activates ion 

channels similar to the neurotransmitters. PF4 binds to a chloride channel of the 

body muscle of Ascaris to cause hyperpolarization and relaxation. This action was 

found not inhibited by G-protein inhibitors. The hyperpolarization induced by PF4 is 

rapid and comparable in time course to the GABA gated chloride channel (Holden-

Dye et al., 1997; Purcell et al., 2002b, a; McVeigh et al., 2006).  
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GPCRs of FLPs from C. elegans have been studied through heterologous 

expression. Chinese hamster ovary cells, human embryonic kidney cells or 

Xenopus oocytes were used as mediums to express these GPCRs for screening 

the putative ligands. The potency of ligands were studied based on the receptor 

binding resulting in cellular responses in calcium fluorescence based assays or 

GTP binding assays. These studies have helped to identify about 11 reported 

GPCRs. Further techniques in C.elegans involving gene silencing techniques such 

as RNA interference (RNAi) have identified about 60 GPCRs (McVeigh et al., 2006). 

FLPs have also been studied in bioassays for determining the effects on 

neuromuscular function in somatic, ovijector and pharyngeal muscle of Ascaris. In 

some studies in Ascaris, the FLPs were injected into the pseudocoelomic fluid to 

study their effects on whole worms and the changes in cAMP levels (Reinitz et al., 

2000).  
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Fig 6. FLP signaling pathways from A. suum and Ascaridia gali modified from 

McVeigh et al (2006). A majority of FLPs act on GPCRs causing an 
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increase/decrease in cAMP except PF4 which acts on the chloride channel. Note 

that an increase in cAMP does not always correspond to muscle contraction. PF1 

acts on the GPCR of hypodermis to cause an entry of calcium and results in the 

production of nitric oxide (NO). The nitric oxide produced escapes from hypodermis 

to the muscle cell to cause muscle relaxation.   

    

2.12.4 Neuropeptide AF2      

AF2 is a heptapeptide KHEYLRF-NH2 (AF2) was first isolated from the head 

extracts of the parasitic nematode A. suum (Cowden and Stretton, 1993). Later it 

was also found in free living nematodes, nematodes Panagrellus redivivus (Maule 

et al., 1994), C. elegans (Marks et al., 1995) as well as in the parasitic nematode 

Haemonchus contortus (Keating et al., 1995). Among the free living or parasitic 

nematodes studied, AF2 was found to be the most abundant FLP. 

AF2 was found to be an excitatory neuropeptide when tested in bioassays, somatic 

muscle contraction assays and electrophysiological studies. AF2 has been found to 

elevate cAMP levels in A. suum when injected into the pseudocoelomic fluid. AF2 

produced a sustained elevation in cAMP levels (127 times higher than the control) 

and produced paralysis by shortening the body length of the worm. Sustained cAMP 

levels are thought to produce spatial and temporal effects on the muscle cells that 

receive input from the motor neurons and also the potentiate PKA activity (Reinitz et 

al., 2000; Kubiak et al., 2003; Thompson et al., 2003). In Ascaris muscle contraction 

assays application of AF2 induced a biphasic response which consisted of an initial 
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inhibitory phase followed by an extended excitatory phase. The extended excitatory 

effect included rhythmical contractions observed at nanomolar concentrations of 

AF2 (Cowden and Stretton, 1993; Pang et al., 1995). Increasing concentrations of 

AF2 (from nm to µM) reduced the initial inhibitory phase but increased the excitatory 

phase (Pang et al., 1995). AF2 application produced an increase in muscle tension 

response to ACh in Ascaris muscle (Keating, 1996). The effect of AF2 was tested 

on dorsal excitatory motor neurons type 2 (DE2) and dorsal inhibitory (DI) motor 

neurons. These two motor neurons eventually form a common final output on to the 

somatic muscle cells responsible for locomotion. On the DE2 motor neuron, AF2 

produced strong depolarization (>25 mV) with a biphasic effect on the input 

resistance (initial decrease followed by an increase) with negligible change in the 

frequency of the excitatory junction potentials, EPSPs. The effect of AF2 persisted 

in the extracellular substitution of calcium with cobalt which suggested a direct 

effect of AF2 rather than a presynaptic effect involving release of neurotransmitters. 

In contrast to DE2 motorneurons, AF2 had no significant effect on dorsal inhibitory 

motor neurons. These effects correlated with direct injection of AF2 to 

pseudocoelomic fluid of the Ascaris. In these experiments AF2 produced rapid 

jerkiness or hyperactivity (Davis and Stretton, 2001). Davis and Stretton from this 

study concluded that the profound excitatory effect of AF2 is on DE2 motor neurons. 

In electrophysiological studies, a brief application of AF2 (1 µM, 2 min) followed by 

a wash (1 min), produced long lasting potentiation of ACh depolarizations (Trailovic 

et al., 2005).  AF2 also produced an increase voltage activated calcium currents in 

Ascaris muscle (Verma et al., 2007). For drug discovery, targeting the AF2 
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receptors has gained momentum due to an abundance of AF2 across the nematode 

phylum and further profound effects on locomotion and cAMP levels.  

 

2.13 Ascaris Pharynx 

In addition to somatic muscle, the pharynx of Ascaris is also regarded as a valid 

drug target due to its role in feeding. The pharynx of Ascaris is important for feeding 

from the ingesta of the host gut. As the worms possess limited glycogen reserves, 

they continuously feed on the ingesta to maintain their energy demands. Starving 

and slow moving worms do not survive within the host gut as they are removed 

during bowel movements. An appropriate functioning of the pharynx is necessary 

for feeding and further for the survival of worms within the host gut.  

 

2.13.1 Anatomy of Ascaris Pharynx 

Pharynx in Ascaris is a muscular and glandular pumping organ with a tri-radiate 

lumen (Fig 7 A, B and C). Externally, the Ascaris pharynx resembles a cylindrical 

tube approximately 1 cm in length and slightly greater than 1 mm in width/diameter 

at its bulkiest end. The cuticle along with hypodermis and the somatic muscle layer 

surrounds the pharynx from outside. In addition, the interior of the pharyngeal lumen 

is derived from the cuticle (del Castillo and Morales, 1967a). The arrangement of 

cells (muscle cells and marginal cells) surrounding the inner lumen of the pharynx is 

analogous to the arrangement of segments of an orange. Unlike the somatic muscle 
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spindles of Ascaris which are obliquely striated, the pharyngeal muscle has non-

striated radially oriented filaments similar to vertebrate smooth muscle. These non-

striated myofibrils of the pharyngeal muscle cells extend radially between the 

external and internal surfaces of the pharynx (Reger, 1966). This radial 

arrangement of myofibrils allows the pharynx to functions like a pump analogous to 

the vertebrate diaphragm. A contraction will increase the size of the lumen thus 

decreasing the intra luminal pressure to enable suction. On the contrary, a 

relaxation reduces the size of the lumen thus increasing the intra luminal pressure 

to push the contents down into the intestine. There are two valves one at each end 

(anterior and posterior) that ensure unidirectional flow of the material within the 

pharynx. There are glandular cells that are found interspersed between the 

myoepithelial cells to secrete digestive enzymes. The intestine is attached to the 

pharynx and is separated by a valve. The intestine remains flaccid under a high 

pseudocoelomic pressure (average -70mm Hg). The pseudocoelomic pressure is 

essential for the maintaining tonicity of the somatic musculature of the worm. Under 

these conditions, the pharynx has to pump to override the pseudocoelomic pressure 

in order to pump the food materials into the intestine. Thus, the pharynx behaves 

like a pressure pump.  
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Fig. 7 A. Photograph of the head region of female A. suum worm (cm scale above 

the worm). B. A diagram of the head region of Ascaris showing the 
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enteric/pharyngeal nervous system. The two ends of pharynx, anterior end (towards 

the lips) and the posterior end (joins the intestine at the valve region, v). The 

pharyngeal nervous system originates from the nerve ring (n) travels anteriorly as 

two sub lateral nerve cords (sl) and a dorsal nerve cord (d) (Brownlee et al., 1996). 

These nerve cords (nc) can also be observed in the cross section of pharynx, C. 

Muscle cells, m, gland cell, G, are seen in the cross section of pharynx surrounding 

the pharyngeal lumen (del Castillo and Morales, 1967a). B. Observe the 

ramification (r) of nerve plexus over the pharynx. D. The pharynx of C.elegans 

showing different segments of pharynx namely procarpus, metacorpus (anterior 

bulb), isthmus, terminal bulb and the valve (Mango, 2007). Unlike Ascaris pharynx, 

C.elegans pharynx is visible due to transparent cuticle, contains distinct divisions.    

 

2.13.2 Pharyngeal peristalsis in Ascaris 

In contrast to the transparent pharynx of C.elegans, Ascaris pharynx is opaque and 

difficult to discern divisions. In addition, there are no distinct (anterior and posterior) 

bulbs visible in Ascaris pharynx (Mapes, 1965). The studies on Ascaris pharynx 

showed that the pharyngeal muscle contractions result in rhythmic peristalsis not a 

two stage pumping. A two stage pumping seen in C. elegans has characteristic 

contractions of anterior and terminal bulb followed by isthmic peristalsis. In the 

literature, we often find a common term “pharyngeal pumping”, which does not 

clearly distinguish pharyngeal muscle contractions of the Ascaris from the C. 

elegans. The more appropriate term for pharyngeal contractions in Ascaris is 
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pharyngeal peristalsis. The pharyngeal contractions in case of C .elegans involves 

distinct pharyngeal pumping (contractions of anterior and posterior bulb) followed by 

pharyngeal peristalsis (isthmus). The pharyngeal contractions in C. elegans are 

explained in later paragraphs. In Ascaris, pharyngeal peristalsis starts at the 

anterior tip of the pharynx and proceeds all the way to the end of pharynx. The 

anterior tip of Ascaris pharynx is considered as the pacemaker. This anterior tip 

initiates peristalsis either by myogenic activity or by enteric nervous system activity. 

The depolarization of pharyngeal muscles at the anterior tip of pharynx results in 

progressive contraction waves which moves posteriorly at an average speed of 4 

cm/sec. The Ascaris pharynx at any stage of peristalsis never opens fully at both 

ends (anterior or posterior). Fig 8 shows, during pharyngeal peristalsis the 

pharyngeal lumen at the anterior end initially closes before it opens at the posterior 

end ensuring one way flow of food materials (Saunders and Burr, 1978).  The 

peristaltic cycles have been recorded from Ascaris pharynx show 4 pumps/sec from 

an intact pharynx while, 2.5 pumps/sec from an isolated pharynx (Mapes, 1965; 

Saunders and Burr, 1978).  
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Fig 8. The diagram showing various stages observed during normal peristaltic cycle 

of Ascaris pharynx (Saunders and Burr, 1978). The different time points 

represented in seconds shows repeating cycle of pharyngeal peristalsis 

(approximately every 0.32 s). At any point pharynx never opens simultaneously at 

both anterior and posterior ends.   
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2.13.3 Membrane potential of Ascaris pharynx. 

Electrophysiological studies have been made by exposing the pharynx by dissecting 

out cuticle and surrounding muscle layer in Ascaris. Electrophysiologically the whole 

Ascaris pharynx behaves like one single giant cell owing to the presence of 

numerous gap junctions (del Castillo and Morales, 1967a). Ascaris pharynx has a 

resting membrane potential of -40mV maintained mainly by extracellular organic 

anions found in the perienteric fluid. The inorganic anion chloride extracellularly 

failed to substitute for the removal organic anions (for example bicarbonate). The 

resting potential Ascaris was also found to be sensitive to pH.  Acidification from pH 

7 to 6 resulted in depolarization (of 20 mV) while an alkalizing to pH 8 resulted in 

hyperpolarization (of 4 mV). The observed relation between pH and resting potential 

has been linked to permeability of anions from the perienteric fluid of the worm (del 

Castillo and Morales, 1967b, a). By examining electron microscopy sections of 

pharyngeal muscle, Del Castillo and Morales (1967a) suggested existence of 

membrane spaces within the cytoplasm of pharyngeal muscle. These spaces are 

proposed to be equivalent to the tubular systems of the muscle cells in vertebrates 

that function to carry the flow of action potentials. Interestingly, when microelectrode 

tip enters into theses spaces the resting potential is either greatly reduced or absent 

as if the electrode has briefly moved out of the cell into the surrounding bath 

solution. The recorded signals from a microelectrode placed in these spaces 

resembled extracellular action potentials (del Castillo and Morales, 1967b, a).  
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The action potential in Ascaris pharynx was found to be a regenerative, all or none 

process in contrast to the somatic muscle the worm. The action potentials resulted 

in depolarization (positive overshoot) to reach a plateau. The depolarization is result 

of influx of cations namely sodium or calcium. From the plateau followed a 

repolarization caused by a potassium spike. Interestingly, the potassium spike goes 

intensely negative to produce negative membrane potential before reaching the 

resting membrane potential. This intense negative hyperpolarization was called a 

negative potassium spike. Depolarization can reach as high as 18mV with a marked 

hyperpolarization (a fast negative potassium spike as low as -108 mV) during the 

repolarization. Voltage-gated potassium channels are shown to be responsible for 

the negative regenerative hyperpolarizing spike. This voltage gated potassium 

channel has been found to close when the membrane is depolarized but, opens 

during rapid negative membrane potentials (Byerly and Masuda, 1979b). Unlike the 

somatic muscle of Ascaris, spontaneous activity (spikes) was occasionally observed 

in pharynx (del Castillo and Morales, 1967a). 

 

2.13.4 Nervous system of Ascaris pharynx 

We observed previously that somatic muscle cell of Ascaris extend their arms to the 

nerve cord to receive innervation forming syncytium that surrounds the nerve cord. 

In contrast, pharyngeal neurons are embedded below the pharyngeal muscle 

regions. The neuromuscular synapses are made when the nerve cord containing 

neurons extend their course. There are 3 longitudinal nerve cord arise from the 
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circumferential ring extend in the anterior direction to innervate the pharyngeal 

muscle. These nerve cords are referred to as dorsal and a paired sub-ventral cords 

(Saunders and Burr, 1978). The dorsal nerve is made up of two neuronal cell bodies 

when compared to sub ventral nerve cord which contains 4-6 neuronal cells 

(Goldschmidt, 1910; Brownlee et al., 1995; Brownlee et al., 1996). There are 2-3 

cross connecting commissures joining the longitudinal cords together. The 

processes arise from the nerve cords spread across (ramifiy) the pharyngeal 

muscle to provide a widespread innervation. This widespread innervation is 

important for coordinating the muscular and glandular activity of the pharynx. 

The pharyngeal nervous system is complex, involving cholinergic (excitatory), 

glutamatergic (inhibitory) and serotoninergic (excitatory) systems innervating the 

pharyngeal muscle. In addition, the pharyngeal nervous system has GABAergic 

components (excitatory) limited to the sensory neurons, and peptidergic secretory 

components (McIntire et al., 1993; Brownlee et al., 1996). The peptidergic 

components have been studied by immunoreactivity and show the presence of 

pancreatic polypeptide, peptide YY, gastrin and numerous invertebrate 

neuropeptides (Brownlee et al., 1996).  

 

2.14 Anatomy of C.elegans pharynx 

The pharyngeal muscle contractions of C. elegans pharynx have been well 

understood due to transparent nature of cuticle and pharynx (Fig 7.D). When 

compared to Ascaris pharynx, C.elegans pharynx has distinct divisions. The 
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pharynx of C. elegans is bilobed consisting of an anterior lobe and the posterior 

lobe. These two lobes are joined by a narrow tube called Isthmus where, the nerve 

ring is located. C .elegans pharynx is encased by a basement membrane on the 

exterior side. The pharynx can be further subdivided into six sections starting from 

the anterior end to the posterior end. These include the buccal cavity, procorpus, 

metacorpus (anterior bulb), isthmus, terminal bulb (posterior bulb) and pharyngeal-

intestinal valve. Muscle regions of pharynx mediate rhythmic contractions. These 

rhythmic contractions aid in suction of bacteria into the pharyngeal lumen for 

grinding before passing them back into the intestines. At the anterior-most end the 

pharynx is connected to arcade cells which form the lips. The pharyngeal lumen is 

covered with cuticle which is continuous with the outer cuticle of the body. Just 

under the outer cuticle there are nerve endings that contain mechanoreceptors. The 

cuticle between isthmus and metacarpus forms a sieve which helps in trapping 

particulate matter after expelling excess of liquid and later to mix with digestive 

enzymes secreted by gland cells (Albertson and Thomson, 1976). The pharynx is 

made up of a total of 77 cells. Among them, the contractile areas of the pharynx are 

formed by 34 muscle cells and 20 neuronal cells. These 20 neuronal cells belong to 

the pharyngeal nervous system sometimes referred to as the enteric nervous 

system. The other cell groups include 9 marginal cells, 9 epithelial cells and 5 gland 

cells.  

There are a total of 34 muscle cells divided into eight pharyngeal muscle cell 

segments (pm1,-8) which are positioned from the anterior to the posterior end of the 
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pharynx. The muscle cells of the pharynx towards the lumen form a tri-radiate 

symmetry similar to Ascaris pharynx. The pharyngeal muscle cells are joined to 

each other by marginal cells in turn connected by desmosomes or tight junctions. 

The pharynx has been functionally divided into anterior carpus (combination of 

procarpus and metacarpus) made up of pharyngeal muscles pm1 through pm4 

forming the anterior half of the pharynx. The corpus is important for ingestion and 

trapping bacteria. The middle Isthmus is formed by pharyngeal muscle pm 5. The 

isthmus functions in peristalsis to regulate the flow of food from the corpus to the 

terminal bulb known as pharyngeal peristalsis. The terminal bulb of the pharynx is 

formed by pharyngeal muscles pm6 through pm8. The terminal bulb is important for 

grinding the bacteria.  

Other cells of the C. elegans pharynx include, 9 marginal cells arranged in sets of 3 

cells (mc1-3) embedded between the muscle cells. There are gap junctions 

between muscle cell and marginal cell to relay the signals. There are 5 gland cells 

which make up two cell types (g1-2) to secrete digestive enzymes. Towards the 

outer border of pharynx there are 9 epithelial cells which anchor the basement 

membrane of the pharynx to the outer cuticle.  

The pharyngeal nervous system consists of 20 cells which include paired and 

unpaired neurons. The neurons of the pharynx are situated between the pharyngeal 

muscle and the basement membrane of hypodermis Based on their functions; 

neurons are classified into five types of motor neurons (M1-5, total seven cells), 6 

types of interneurons (I1-6, total eight cells), two neuro-secretory motor neurons 
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(NSMs), one motor interneuron and two marginal cell neurons (Albertson and 

Thomson, 1976). The role of important motorneurons that regulates feeding 

behavior in C.elegans is discussed in further paragraphs.  

 

2.14.1 The pharyngeal muscle action potential 

The resting membrane potential of C.elegans is similar to Ascaris and ranges from -

40mV to -50mV. Each pumping event is a consequence of a single muscle action 

potential. These action potentials are intrinsic to the pharyngeal muscle cells and 

are independent of the involvement of pharyngeal nervous system. Pumping of the 

pharynx in C. elegans is found to continue even after laser killing of the entire 

pharyngeal nervous system. Among all the other motor neurons, laser killing of M4 

had observable effects. During rapid pumping, the MC motor neuron played a role 

in generating excitatory postsynaptic potential (EPSPs) on to the pharyngeal muscle 

(Raizen and Avery, 1994; Raizen et al., 1995). The action potentials generated by 

the pharyngeal muscle of C. elegans are similar to Ascaris pharyngeal muscle. 

These pharyngeal action potentials are also comparable to the ventricular 

myocardium in vertebrates (Raizen and Avery, 1994). Similar to Ascaris pharynx, 

C.elegans pharynx has three phases namely excitation phase, plateau phase, and 

repolarization phase.  

The electrical activity of the pharynx of C. elegans has also been studied indirectly 

by making electropharyngeograms (EPGs). The EPGs represent the sum total of 
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electrical events that flow in and out during pharyngeal openings. Each excitation 

phase corresponds to a positive spike in the EPG while, the repolarization phase is 

seen as a negative spike (Raizen and Avery, 1994). 

 

2.14.2 Feeding in C.elegans pharynx 

C. elegans feeding behavior is classified as filter-feeding and differs from Ascaris. 

As the worm ingests liquid with suspended bacteria, the excess liquid is expelled 

out to concentrate the bacteria. The filter-feeding of C. elegans is explained in two 

motions of pharynx that is, pumping and the isthmus peristalsis. The pharyngeal 

lumen during the resting state is closed resembling a Y-shape. This Y-shape of the 

pharyngeal lumen is a result of relaxation of radially oriented pharyngeal muscle 

fibers. Pumping results in simultaneous contraction of the muscles of the corpus, 

anterior isthmus, and the terminal bulb to open the pharyngeal lumen. The opened 

pharyngeal lumen is a triangular shape due to contraction of radially oriented 

contractile filaments. The opening of the pharyngeal lumen allows filling with liquid 

containing suspended bacteria. During this period the posterior end of isthmus is 

closed. The relaxation of the carpus expels the fluid to retain the bacteria. The 

trapped bacteria are then passed on to terminal bulb for grinding by a process 

called isthmus peristalsis. Isthmus peristalsis occurs when the corpus (anterior bulb) 

and terminal bulbs relax. Isthmus peristalsis follows once after every fourth 

pumping. Before the next contraction and relaxation cycle, the terminal bulb grind 

the bacteria then, passes them into intestine once the pharyngo-intestinal valve is 
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opened (Albertson and Thomson, 1976; Avery and Horvitz, 1989; Avery and 

Shtonda, 2003).   

 

2.14.3 Motorneuron controls during feeding 

Although the nematode pharynx is independent and self-regulated, two nervous 

systems exert considerable control over its activity. These two nervous systems are 

the pharyngeal nervous system and the somatic nervous system. The somatic 

nervous system senses the sensory stimulation (presence of food) from the exterior 

and passes the information on to the pharyngeal nervous system. Severing the 

connections between these two nervous systems results in pharyngeal pumping 

which is unresponsive to external stimuli. Selective laser surgery of motor neurons 

has given some valuable information on their role in pharyngeal activity. This 

procedure has pointed to three motor neuron types necessary and sufficient for 

normal feeding namely M4, MC, and M3. When all pharyngeal neurons except the 

motor neurons M4, MC, and M3 are laser ablated, feeding is found to be nearly 

normal. Another important pharyngeal neuron type is the neurosecretory motor 

neuron (NSM). The NSM motorneuron functions in conveying the sensory 

information such as the presence of food to the worm (Avery and Horvitz, 1989; 

Raizen and Avery, 1994; Raizen et al., 1995; Avery and Shtonda, 2003).  

I have described briefly the three important neuron types for the regulation of the 

pharyngeal nervous system of C. elegans.   
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M3 motor neurons are a bilaterally symmetric pair of motor neurons which send 

their input to the metacorpus. MC neurons generate inhibitory postsynaptic 

potentials (IPSPs) in the pharyngeal muscle which trigger repolarization and 

relaxation (Albertson and Thomson, 1976). The M3 motor neurons are essential for 

regulating the speed of relaxation and in the absence of M3 motor neurons the 

relaxation is delayed. The speed of relaxation is found to be important for effective 

trapping of bacteria (Avery, 1993a). The studies on M3 motor neurons suggest that 

it is an inhibitory motor neuron. The M3 motor neuron mediates its function through 

the neurotransmitter glutamate. Application of glutamate pulses over the pharyngeal 

muscle mimics responses similar to stimulation of the M3 motor neuron. In mutants 

of the avr−15 (avermectin-resistant) gene which codes for glutamate-gated chloride 

channel subunits, both the M3 motor neuron transmission as well as the responses 

to glutamate were found to be absent (Dent et al., 1997). These glutamate channels 

were found to be avermectin-sensitive. When the avermectin sensitive glutamate 

channels from C. elegans are expressed in Xenopus oocytes, these channels were 

found to be irreversibly opened by avermectin (Cully et al., 1994).  

M4 motorneurons sends its synapses on to the posterior half of the isthmus 

muscles. The M4 motor neurons control peristalsis of the isthmus and in its absence 

isthmic peristalsis was found to be absent. Worms where M4 neurons were laser 

killed swallow little or no food in the pharynx which resulted in failure to grow 

resembling starvation. Although these worms continue to pump but, the bacteria in 

the pharynx were found concentrated in the anterior isthmus and corpus. Further, 
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these worms show a stuffed pharynx due to paralysis of the posterior isthmus 

(Avery and Horvitz, 1989; Raizen and Avery, 1994; Raizen et al., 1995). 

Immunohistochemistry studies suggest the M4 motor neuron mediates its effects 

through acetylcholine as its neurotransmitter (Alfonso et al., 1993).  

Neurosecretory motor neuron (NSM) are serotonergic neurons located in the 

anterior bulb (Albertson and Thomson, 1976). The effect of serotonin has been 

studied on C.elegans hermaphrodites. Serotonin increased pharyngeal pumping 

frequency, stimulated egg laying and decreased the movement of the worm (Avery 

and Horvitz, 1989). Exogenous application of serotonin stimulated pharyngeal 

pumping suggesting the presence of serotonergic receptors on the pharyngeal 

muscle. However, laser killing of NSM motorneurons was observed to have subtle 

effects on pharyngeal pumping in C. elegans suggesting other motor neuron (MC 

motorneuron) may compensate in the absence of NSM (Avery and Horvitz, 1989; 

Bargmann and Avery, 1995; Raizen et al., 1995).  

MC motorneurons control the rate of pharyngeal pumping and their absence has 

shown to cause slow pumping. The MC motor neurons are found to be excitatory 

motor neurons. The MC motor neurons are found to initiate action potentials 

excitatory postsynaptic potential  (EPSPs) in the pharyngeal muscle as well as to 

increase the frequency of pharyngeal pumping (Raizen et al., 1995). The MC motor 

neuron are termed as the pacemaker of the pharynx. Pharmacological and genetic 

studies in C. elegans suggest that acetylcholine is the neurotransmitter of MC motor 

neuron. Application of acetylcholine or cholinergic agonists excited the pharyngeal 
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muscle while curare competitively blocked the response (Raizen et al., 1995). MC 

motor neurons were difficult to stain in immuno-histochemical studies. Interestingly 

MC motor neuron synapses were found on the marginal cells not on the pharyngeal 

muscle inferring that the signal spreads through gap junctions. This is proposed to 

be analogous to purkinje fibers which conduct the impulses of the cardiac 

pacemaker to the myocardium (Albertson and Thomson, 1976). 

 

2.14.4 Genes encoding pharyngeal muscle nAChRs in C.elegans 

Even though, genome of C. elegans is fully sequenced, the literature available on 

the pharyngeal muscle nAChRs is limited. Only two genes among the genes 

regulating pharyngeal pumping code for the pharyngeal nAChR function. The genes 

coding for the pharyngeal nAChRs subunits and their expression studies is still an 

unexplored ground.  

eat-2 gene encodes a ligand-gated ion channel subunit and most closely resembles 

a non-alpha-subunit of nicotinic acetylcholine receptors (nAChR). EAT-2 expression 

was found on the postsynaptic membrane of the pharyngeal muscle. The 

expression of EAT-2: GFP fusion protein was found near the junction of pharyngeal 

muscles pm4 (at the anterior bulb) and pm5 (part of the isthmus), which is also the 

site of the MC motor neuron and its synapse. In addition, eat-2 genetically interacts 

with eat-18, expressed in pharyngeal muscle encoding a transmembrane protein 

required for proper function of pharyngeal nicotinic receptors (Raizen et al., 1995).  
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eat−18 gene encoding a transmembrane protein associated with the functioning of 

pharyngeal nicotinic receptors. EAT-18 is required for the pharyngeal muscle to 

respond to nicotine and also for MC motorneuron transmission. The eat-18 null 

mutants were indistinguishable from the worms which had MC motor neuron 

ablated. These eat-18 null mutants also resembled worms that carried partial loss-

of-function mutations in the cha−1 and unc-17 genes necessary for cholinergic 

transmission. The gene cha−1 encodes an enzyme cholineacetyltransferase that 

synthesizes acetylcholine. The gene unc−17 encodes a synaptic vesicle 

acetylcholine transporter (VAChT) required for loading acetylcholine into synaptic 

vesicles in cholinergic neurons (Avery and Horvitz, 1989; Avery, 1993b, a; Raizen 

and Avery, 1994; Raizen et al., 1995).   

eat-5 gene encodes a protein “innexin” which is expressed in pharyngeal muscle 

cell (pm4 and pm5). Innexins are required for synchronizing the pharyngeal muscle 

contractions by forming electrical connections (gap junctions) between pharyngeal 

muscle cells. The protein EAT-5 forms electrically permeable intercellular channels 

(gap junctions), with a predicted membrane topology analogous to that of connexin 

gap junctions found in vertebrates (Avery, 1993b; Avery et al., 1993). 
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2.14.5 Neurotransmitters controlling pharyngeal peristalsis / pumping 

Glutamate 

Glutamate is an excitatory neurotransmitter in the vertebrate nervous system but is 

both excitatory and inhibitory neurotransmitter in invertebrates. Glutamate is 

produced during transamination where an amino group of amino acid (for example 

alanine or aspartate) is transferred on to a α-ketoacid (α-ketoglutarate). The 

intermediates which are derived during the production of glutamate form substrates 

for glycolysis, gluconeogenesis and the citric acid cycle. Glutamate is stored in the 

synaptic vesicles at the presynaptic nerve terminals to activate glutamate receptors 

on the postsynaptic cell. Glutamate gates the cation (calcium) gated NMDA 

receptors in vertebrates. The NMDA receptors are involved in cognitive functions 

(learning and memory) in synapses found in hippocampus and neocortex. In 

invertebrates, glutamate receptors activate chloride channels (GluCls) to result in 

hyperpolarization. Glutamate transporters found on the presynaptic membranes and 

glial membranes rapidly remove glutamate from the synapse.  

 These GluCls are more closely related to mammalian glycine receptors than GABA 

gated chloride channels (Vassilatis et al., 1997; Dent, 2006). GluCls are involved in 

pharyngeal pumping, sensory perception and locomotion in nematodes. The GluCls 

are the targets of the macrocyclic lactone group (ivermectin, moxidectin) of 

anthelmintics, the biggest selling class of anthelmintics in veterinary medicine. 

These drugs are not only potent anthelmintics but also, insecticides and acaricides. 

The glutamatergic motor neurons (M3) innervate pharyngeal muscle (pm4) cells 
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(Albertson and Thomson, 1976). The glutamatergic motor neurons (M3) generate 

inhibitory post synaptic potential (IPSPs) to regulate the timing of muscle relaxation 

during pharyngeal pumping (Avery, 1993a; Raizen and Avery, 1994; Raizen et al., 

1995). 

Two genes glc-1 and glc-2 encoding subunits encoding GluClα and GluClβ, have 

been identified in C.elegans by expression studies in Xenopus oocytes, Table 2 

(Cully et al., 1994). The homomeric channel formed by expression GluClα in 

Xenopus revealed an ivermectin gated channel while expression of GluClβ revealed 

a glutamate gated ivermectin insensitive channel. The heteromeric glutamate-gated 

chloride channel (GluClα andβ) assembled was ivermectin sensitive glutamate 

gated chloride channel.  GFP tagging revealed the expression of GluCls in 

pharyngeal muscle cells and neurons (mechanosensory neurons namely ALM, PLM 

and PVD) (Dent et al., 2000). Alternative splicing of the gene avr-15, responsible for 

avermectin resistance in C.elegans revealed two α subunits, GluClα2A and 

GluClα2B which are sensitive to ivermectin and glutamate. Both GluClα2 and the 

GluCl β were found to be expressed in pharyngeal muscle (pm4 and pm5). 

Alternative splicing of avr-14, another gene responsible for ivermectin resistance 

yielded GluClα3A and GluClα3B (Dent et al., 2000). Unlike the expression of avr-

14 and avr-15, which are widespread, glc-2 (GluClβ) expression is limited to the 

pm4 of the pharyngeal muscle cells (Laughton et al., 1997)  Expression of GluClα2 

was wide-ranged including the nematode motor nervous system which explains how 

the effect of ivermectin application on the nematode affects the locomotory system. 
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Later, gene glc-3 encoding GluClα4 was also identified which is predicted to be 

distant form α or β GluCl subunits. Glutamate activation of most of homomeric GluCl 

α receptors produces a rapid opening (EC50 was 1–2 mM) of the channel which 

resulted in rapid desensitization. However the desensitization was not observed in 

receptors containing homomeric GluClβ subunits (Cully et al., 1994; Vassilatis et al., 

1997; Dent et al., 2000; Forrester et al., 2003; Wolstenholme and Rogers, 2005b). 

Interestingly, upon ivermectin treatment GluCl opening was slow and essentially 

irreversible (EC50 0.1 to 10 µM) and these channels remained open even when the 

drug is removed. Ivermectin had no effect on homomeric GluClβ subunits (Cully et 

al., 1994; Wolstenholme and Rogers, 2005b). The application of glutamate and 

ivermectin has shown potentiation in the activation of GluCls (Cully et al., 1994; 

Forrester et al., 2004). The high-resolution structure of the GluCl shows the binding 

sites of avermectin anthelmintics. The slow effect of avermectins is due to initial 

entry of the drug through the plasma membrane and then binding to the pore region 

formed by the α-helixes of cys-loop receptors like GluCls (Unwin, 2005; 

Wolstenholme, 2011). Once the drug binds the channel in the open state, it 

prevents the pore region from returning back to closed state resulting in a long-

lasting channel-opening and a hyperpolarization of the cell which is no longer 

excitable. The other effects of the drug in parasite nematodes include long-lasting 

sterilization of Onchocerca volvulus adults in vivo (Awadzi et al., 1985; 

Wolstenholme, 2011) and lethal effects on Brugia malayi microfilariae (Moreno et 

al., 2010).  
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Table 2. A and B taken from Wolstenholme and Rogers (2005b). A. Shows the 

subunit genes of glutamate gated chloride channels in C. elegans and their 

properties. B. shows the glutamate gated chloride channels studied in parasitic 

nematodes and their properties.   
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2.14.6 Biogenic amine neurotransmitters or neuromodulators 

In nematodes there are four biogenic amines namely serotonin (5-

hydroxytryptamine, 5HT), dopamine, octopamine and tyramine that modulate worm 

behavior in response to the surrounding environment. Most of these biogenic 

amines act on GPCRs to elicit their function. Serotonin is an exception that, it has 

receptors that are GPCRs (5HT1-2 and 3-7) as well as ion channels (5HT3). The 

main effects of the biogenic amines include activation or modulation of neurons to 

influence pharyngeal pumping, locomotion, learning, foraging, egg laying and 

defecation. The roles of dopamine and serotonin have established in mammalian 

nervous system. An abnormality in dopamine and serotonin signaling is implicated 

in diseases like Parkinson’s disease, schizophrenia and depression. The precursors 

for 5HT is tryptophan which is converted to 5-hydroxytryptophan by tryptophan 

hydroxylase and later into serotonin (5HT) by aromatic amino acid decarboxylase. 

In the synthesis of other biogenic amines tyrosine is a precursor, acted upon by 

tryptophan hydroxylase, aromatic amino acid decarboxylase to form dopamine. 

Similarly, tyrosine is acted upon by tyrosine decarboxylase to from tyramine which 

is further catalyzed by tyramine-β-hydroxylase to form octopamine. Exogenous 

application of octopamine in C.elegans has been shown to stimulate worm 

movement but inhibit pharyngeal pumping and inhibition of egg laying. Octopamine 

has been shown to bind to tyramine receptors expressed in eukaryotic cells 

resulting in an increase in intracellular cAMP. Tyramine is secreted in low quantities 

from the same cells that synthesize octopamine. This implies tyramine may just be 
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an intermediate in the synthesis of octopamine. Exogenous tyramine in C.elegans 

was shown to inhibit egg laying and also inhibit serotonin-induced pharyngeal 

pumping (Komuniecki et al., 2004; Rex et al., 2004b; Martinez-Torres and Miledi, 

2006; Chase and Koelle, 2007; Wragg et al., 2007).  

Dopamine in mammalian brain acts on GPCRs characterized as D1-D5. According 

to activation of second messengers they are grouped as; D1-like (Gsα, increase 

cAMP) which includes D1 and D5; D2-like (Giα, decrease cAMP). The dopamine 

receptor is also linked to calcium and potassium channel activity. A similar 

characterization has been done in the dopamine receptors of C.elegans namely D1-

like called DOP-1 and D2-like called DOP-2 (Suo et al., 2002, 2003; Sugiura et al., 

2005). Dopamine signaling is part of mechanosensory neurons in C.elegans that 

modulate locomotion, behavior and learning. Dopamine also plays a role in the 

search for new food sources (Sawin et al., 2000; Chase and Koelle, 2007). 

 In nematodes, serotonin (5HT) plays a role in feeding, locomotion, egg-laying and 

metabolic regulation of nematodes. There are at least 7 subtypes of serotonin 

receptors in mammals of which 6 of them are GPCRs and one is an ion channel 

(namely 5HT3s). 5HT (EC50- 44 µM) causes an excitation of the pharynx and 

maintenance of pumping in an isolated Ascaris pharynx. 5HT causes an increase in 

cAMP resulting in glycogenolysis in Ascaris (Trim et al., 2001). In C.elegans, 

Serotonin is synthesized by the NSM (neurosecretory motor) neurons in C.elegans 

which helps in sensing food in the surroundings. Serotonin is also secreted by HSN 

(hermaphrodite-specific neurons) which helps to stimulate egg laying (Chase and 
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Koelle, 2007). 5HT activates 3 GPCRs (SER-1, SER-4 and SER-7) and an ion 

channel permeable to chloride (MOD-1). All these 5HT receptors are expressed in 

pharyngeal neurons and muscles of C.elegans (Hamdan et al., 1999). In Ascaris, 

two bilaterally symmetrical neurons in the pharynx have been shown to synthesize 

5HT in immunoreactivity studies (Trim et al., 2001). 

 

2.15 Anthelmintics and emergence of Anthelmintic resistance 

Anthelmintic drugs control helminth infections by selectively disrupting worm 

physiology. Worms reside in the host gut, feed on the ingesta and maintain their site 

of predilection by constantly moving against the bowel movements. Cholinergic 

anthelmintics paralyze the worms by acting on the nAChRs found on the somatic 

muscle of the worm. Once paralyzed, worms fail to move and get expelled from the 

host gut. The cholinergic anthelmintics include: the imidazothiazoles (levamisole, 

tetramisole); tetrahydropyrimidines (pyrantel, morantel & oxantel); 

quaternary/tertiary amines (bephenium, thenium and tribendimidine); pyridines 

(methyridine) and AADs (monepantel) (Martin and Robertson, 2007). Antagonists of 

parasite muscle nAChRs include derquantel & phenothiazine (Robertson et al., 

2002; Zinser et al., 2002). The anthelmintics which act as agonists of nAChRs 

produce spastic paralysis, while the antagonists produce flaccid paralysis of the 

worms. Piperazine mimics the natural ligand GABA and activates GABA gated 

chloride channels on the somatic muscle to cause hyperpolarization. The 

hyperpolarization of the somatic muscle of the parasite results in flaccid paralysis.  
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On the pharynx of the worms, glutamate gated chloride channels (GluCls) are 

present. Glutamate is the endogenous ligand for GluCls. The activation of GluCls 

produce hyperpolarization and inhibit the pharyngeal pumping. Pharyngeal pumping 

in worms is important for the ingestion of food from the host gut. Avermectins 

(ivermectin, doramectin, abamectin) and milbemycins (moxidectin, milbemycin) 

selectively modulate GluCls to potentiate glutamate responses causing inhibition of 

pumping in the pharynx. The inhibition of pharyngeal pumping impairs feeding, 

resulting in starvation of the worms (Wolstenholme and Rogers, 2005b). The 

starved slow moving worms are eliminated from the host gut during peristalsis. 

At therapeutic doses, anthelmintics are selective on the parasite over the host and 

effective in controlling worm infections. Treatment with anthelmintics against 

parasitic worms fails when the worms develop resistance to drugs. “Anthelmintic 

resistance” refers to the ability of parasites to survive treatments that are generally 

effective at the recommended therapeutic doses. Intensive use of an anthelmintic 

agent to control worm infections in herds has led to the selection of genetically 

resistant parasites (Prichard et al., 1980; Prichard, 1990; Prichard, 1994; Waller, 

1997; Silvestre et al., 2002; Kaminsky, 2003). In Australia (Edwards et al., 1986a; 

Jackson and Coop, 2000), Paraguay (Maciel et al., 1996; Waller et al., 1996) and S. 

Africa (van Wyk et al., 1997), anthelmintic resistance threatens the economics of 

the entire sheep industry. In humans, schistosomes and GI nematodes have shown 

resistance to anthelmintics following mass drug therapy programs in endemic 

regions (Ismail et al., 1996; De Clercq et al., 1997; Reynoldson et al., 1997; Ismail 

et al., 1999). After the introduction of ivermectin (in mid-1980’s) we did not see any 
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new anthelmintic come into the market for more than two decades (Geary, 2005). 

The limited number of anthelmintics available for the therapy, coupled with the 

onset of resistance in parasites poses a serious threat to livestock and human 

health (Kaplan, 2004b; Jones and George, 2005). Resistance has reduced the 

efficacy of currently used anthelmintics, limiting drug options to treat worm 

infections (James et al., 2009). Anthelmintic resistance is a global concern due to 

high prevalence of infections in both humans and livestock (Geerts and Gryseels, 

2000; Kaplan, 2004b; Jones and George, 2005).  
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2.15.1 Anthelmintic resistance reports from United States 

Anthelmintic resistance is on the rise in parasitic nematodes of domestic animals in 

the United States. Anthelmintic resistance reports have been recorded from beef 

cattle, sheep and goat farms. A commonly used approach to detect resistance is 

fecal egg reduction test (FECRT) carried out in herds. This test is carried out in 

growing animals which are not exposed to any dewormers preferably of even age 

and body weight. The fecal egg counts are made in controls and two weeks after 

the anthelmintic drug treatment. An effective anthelmintic drug reduces 90-95% of 

the egg counts in fecal samples collected two weeks after the treatment. Any 

reduction in egg counts less than 90-95% indicates a reduction in the efficacy of the 

anthelmintic and development of anthelmintic resistance in the parasites. A study 

conducted in beef cattle farms from 19 states across the United States involving 

119 FECRTs from 4765 samples showed a reduction in efficacy of commonly used 

anthelmintic drugs. The efficacies of Ivermectin;40-76.2%, doramectin;89.9 %. 

However, moxidectin still remained effective, 98.1% in these studies (Bliss et al., 

2008). Cooperia species, Haemonchus species infecting cattle have been observed 

to develop resistance to macrocyclic lactones namely, ivermectin and doramectin 

(Gasbarre et al., 2009). In sheep and goat farms, H. contortus was observed as the 

most common parasite in 46 farms across the South-eastern United States. In these 

farms, parasites resistant to benzimidazoles, levamisole, ivermectin and moxidectin 

have been recorded (Howell et al., 2008). Helminth infections namely toxocariasis, 

ascariasis, strongyloidiasis and cysticercosis have been found to affect 
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impoverished human populations distributed across the Mississippi Delta, 

Appalachian belts, US-Mexico borderlands and a few Southern United States. 

These infections have been referred as “neglected infections of poverty” and remain 

a growing concern to socioeconomically disadvantaged populations (Hotez, 2008).    

 

2.15.2 Anthelmintic resistance reports from India 

Benzimidazole resistance in small ruminants infected with H. contortus has been 

reported in Uttaranchal region of India (Varsheny, 1976; Dubey, 2010). Various 

tests used to identify anthelmintic resistance included fecal egg count reduction 

tests, egg hatch assays and larval migration inhibition assays (Easwaran, 2009). 

However, ivermectin still possess efficacy in sheep infected with H. contortus (Garg 

et al., 2007). Resistance was observed in H.contortus, Telodorsagia species to 

multiple anthelmintics namely levamisole, thiabendazole, has been encountered in 

sheep farms in Tamil Nadu, Southern India.  

 

2.15.3 Electrophysiological studies to understand anthelmintic resistance 

Electrophysiological studies in A. suum demonstrate that anthelmintics targeting the 

nAChRs of the somatic muscle selectively activate nAChR subtypes. There are 3 

subtypes somatic muscle nAChRs: the N-subtype is preferentially activated by 

nicotine, oxantel and methyridine; the L-subtype by levamisole and pyrantel; and 

the B-subtype by bephenium (Martin and Robertson, 2000; Qian et al., 2006; Qian 

et al., 2008). The selectivity of derquantel on the B and L-subtype has allowed us to 
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discriminate between the N-subtype of receptors (Robertson et al, 2002). Martin 

and Robertson (2007) proposed that resistance to anthelmintics which target the 

nAChRs may be produced by four general mechanisms: 

(1) changes in drug translocation (e.g. increased metabolism or excretion of the 

drug); (2) changes in receptor numbers (e.g. loss of a subpopulation of receptors) ; 

(3) changes in the drug binding sites on the receptors (e.g. amino acid substitution); 

or (4) post-receptor modification (e.g. changes in the downstream pathways after 

receptor activation). All of these mechanisms could play a role to result in 

anthelmintic resistance emphasizing its potential polygenic nature (Sangster et al., 

1985; Sangster, 2003).  

 

2.15.4 Using drug combinations to counter anthelmintic resistance 

Traditional treatment against parasitic worms include: “suppressive treatment” with 

anthelmintics at 6–8 week intervals, “strategic treatment” aimed to remove parasites 

from hosts when pasture stages are minimal and “targeted/curative treatment” 

targeted on those animals with a certain level of infection / suffering body condition 

below a threshold (Sangster, 1996; Sangster and Gill, 1999; Sangster, 2003). Other 

methods of treatment are to combine anthelmintics targeting different sites on the 

worm. Studies in Australia show that, resistance to both broad- and narrow-

spectrum anthelmintics is widespread (Besier, 2003; Besier, 2007). The basis for 

combining anthelmintic drugs is to increase the spectrum for therapy, to achieve 

potentiation/synergism and to delay the onset of resistance. This strategy becomes 
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effective when the resistance genes are rare. Even though a parasite may carry one 

resistance gene, it would be less likely to carry the resistance genes to all the 

anthelmintics present in the combination. Using just one drug class is not ideal as 

strong selection against this class can occur because the parasite has to evolve in 

one direction only (Sangster, 2003). Le Jambre et al (2010) showed that even 

though the field-selected strains of T. circumcincta had resistance to several 

classes of anthelmintics when used as single drugs interestingly enough the 

combinations containing the same anthelmintic classes had improved efficacy. As 

the resistance developed by parasites towards anthelmintic drugs is evolving, 

anthelmintic combination therapy ensures removal of nematodes carrying one or 

two resistant genes. There are some limitations in combination therapy as it is 

expensive and also prevents sparing usage of a therapeutic agent. However, in 

countries like Australia and New Zealand, it is becoming clear that the combinations 

should be used before resistance levels climb too high. In the midst of anthelmintic 

resistance, our interest needs to be focused on understanding the physiology of the 

parasites in order to counter the resistance. Further, chemotherapy well supported 

by good management practices ensures greater wellbeing and productivity of both 

animals and humans.   
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CHAPTER 3. LEVAMISOLE AND RYANODINE RECEPTORS:  

AN ELECTROPHYSIOLOGICAL STUDY IN ASCARIS SUUM 

1Modified from a paper published in Mol Biochem Parasitol. (2010); 171(1): 8–16.  

Sreekanth Puttachary2, Alan P. Robertson3, Cheryl L. Clark4, and Richard J. 

Martin3,5 

3.1 Abstract 

Resistance to antinematodal drugs like levamisole has increased and there is a 

need to understand what factors affect the responses to these anthelmintics. In our 

previous study, we examined the role of ryanodine receptors in muscle contraction 

pathways. Here we have examined interactions of levamisole receptors, ryanodine 

receptors (RYRs), the excitatory neuropeptide AF2, and coupling to 

electrophysiological responses. We examined the effects of a brief application of 

levamisole on Ascaris suum body muscle under current-clamp. The levamisole 

responses were characterized as an initial primary depolarization, followed by a 

slow secondary depolarizing response. We examined the effects of AF2 

(KHEYLRF-amide), 1 µM applied for 2 min. We found that AF2 potentiated the 

secondary response to levamisole and had no significant effect on the primary 

depolarization (Trailovic et al., 2005) . Further, the reversal potentials observed 

during the secondary response suggested that more than one ion was involved in 

producing this potential. AF2 potentiated the secondary response in the presence of 

30 µM mecamylamine suggesting the effect was independent of levamisole 

sensitive acetylcholine receptors. The secondary response, potentiated by AF2, 
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appeared to be dependent on cytoplasmic events triggered by the primary 

depolarization. Ion-substitution experiments showed that the AF2 potentiated 

secondary response was dependent on extracellular calcium and chloride 

suggesting a role for the calcium-activated anion channel. Caffeine mimicked the 

AF2 secondary response and 0.1 µM ryanodine inhibited it. 1.0 µM ryanodine 

increased spiking showing that it affected membrane excitability. A model is 

proposed showing ryanodine receptors mediating effects of AF2 on levamisole 

responses.  

____________________ 

1Reprinted with permission of Mol Biochem Parasitol. 2010 May; 171(1): 8–16. 

2Primary researcher and author, Graduate student, Dept. Biomedical Sciences, 
Iowa State University 

3Associate Professor, Dept. Biomedical Sciences, Iowa State University 

4Lab technician, Dept. Biomedical Sciences, Iowa State University 

3,5Corresponding author and Professor, Dept. Biomedical Sciences, Iowa State 
University 

 

3.2 Introduction 

Nematode parasites are a severe burden on the productive lives of humans and 

animals (Jackson, 1993; Albonico et al., 2004; Albonico et al., 2005)[2-4]. Treatment 

of these conditions with anthelmintics is limited to three main classes of drugs, and 

drug resistance has emerged in humans (Albonico et al., 2004; Albonico et al., 

2005) as well as in animals (Jackson, 1993; Kaplan, 2004b) against each of the 

three classes of anthelmintic. The appearance of multidrug-resistance in nematode 
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parasites (Jones and George, 2005) is a worrying development. These concerns 

emphasize the requirement for understanding the mode of action of these 

compounds and mechanisms of resistance. 

Our laboratory has studied levamisole, pyrantel, oxantel and morantel which belong 

to an important group of nicotinic anthelmintic drugs (Robertson and Martin, 1993; 

Dale and Martin, 1995; Evans and Martin, 1996; Robertson et al., 2000; Martin et 

al., 2004; Levandoski et al., 2005) that are used for treatment of ascariasis, 

Trichuris sp. and hookworm infections (Hotez et al., 2005). The target sites of these 

drugs include the pharmacologically distinctive ion-channels that are nicotinic 

acetylcholine receptors (nAChRs) found on the body muscles of nematodes 

(Robertson et al., 1994; Robertson et al., 1999a; Qian et al., 2006). These drugs 

produce spastic paralysis of the parasitic nematode and have an advantage of 

acting rapidly on the parasite, effecting cures within 4 hours. 

We have seen in the previous paper that ryanodine receptors (RYRs) of A. suum 

modulate the amplitude of the levamisole contraction by affecting gmax but not 

EC50. The cellular mechanisms that modulate responses to anthelmintics are 

important to recognize and describe because they may be modified in anthelmintic 

resistance. In this paper we extend our previous observations on the role of RYRs 

in muscle contraction in A. suum, using the current-clamp technique. We 

demonstrate that the RYRs and the entry of calcium play a role in modulating the 

secondary responses to levamisole and its potentiation by AF2. These observations 

demonstrate the role of RYRs in modulating the electrophysiological response, and 
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hence, affect the contractile response to levamisole. It is possible that RYRs are 

modified with the development of resistance to levamisole in parasitic nematodes. 

 

3.3 Materials and Methods 

3.3.1 Muscle flap preparation for electrophysiology 

Adult A. suum were collected weekly from the Tyson's pork packing plant at Storm 

Lake, Iowa. Worms were maintained in Locke's solution [Composition (mM): NaCl 

155, KCl 5, CaCl2 2, NaHCO3 1.5 and glucose 5] at a temperature of 32°C. The 

Locke's solution was changed daily and each batch of worms was used within 4 

days of collection. We prepared 1 cm muscle tissue flaps by dissecting the anterior 

part of the worm, 2-3 cm caudal to the head. A body muscle flap preparation was 

then pinned onto a Sylgard™-lined double jacketed bath chamber maintained at 

35°C by inner circulation of warm water (Fisher scientific Isotemp 3016H, PA, USA). 

The intestines were removed to expose the muscle cells (Trailovic et al., 2005). The 

preparation was continuously perfused, unless otherwise stated, with Ascaris 

Perienteric Fluid-Ringer (APF-Ringer) composition (mM): NaCl 23, Na-acetate 110, 

KCl 24, CaCl2 6, MgCl2 5, glucose 11, and HEPES 5; NaOH or acetic acid was 

used to adjust the pH to 7.6. The incoming perfusate was pre-warmed to 35°C with 

an inline heating system (SH 27B Warner instruments, CT, USA) before application. 

The rate of perfusion was 3.5 - 4 ml.min-1 through a 20 gauge needle placed 

directly above the muscle bag recorded from. The calcium substitution experiments 

were done using cobalt APF-Ringer, composition (mM): NaCl 23, Na-acetate 110, 
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KCl 24, CoCl2 6, MgCl2 5, glucose 11, and HEPES 5mM; pH 7.6. Chloride was 

substituted by acetate in chloride free APF-Ringer. The experimental compounds 

were dissolved in APF-Ringer, cobalt APF-Ringer or chloride free APF-Ringer as 

described in the results. 1 µM levamisole was applied for a period of 10-20 seconds 

as described in the results. AF2 (1 µM) was applied for 2 minutes and followed by a 

minute wash prior to applications of levamisole. 

 

3.3.2 Electrophysiology 

A two-microelectrode current-clamp technique was employed to examine the 

electrophysiological effects in the bag region of A. suum muscle (Fig.1A). 

Borosilicate capillary glass (Harvard Apparatus, Holliston, MA, USA, ID-0.86mm, 

OD- 1.5mm) microelectrodes were pulled on a P-97 Flaming Brown Micropipette 

puller (Sutter Instrument Co., CA, USA). We used 3M potassium acetate in the 

micropipettes which had resistances of 20-30 MΩ. The recordings were obtained by 

impaling the bag region of A. suum muscle with 2 microelectrodes, namely current 

injecting (I) and voltage recording electrodes (V). All experiments were performed 

using an Axoclamp 2A amplifier, a 1320A Digidata interface and Clampex 9 

software (Molecular Devices, CA, USA). All data were displayed and analyzed on a 

PC based desktop computer. The current injecting electrode injected 

hyperpolarizing ramp or step currents, while the voltage recording electrode 

recorded the change in membrane potential in response to the injected currents. 
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Our ramp current was a hyperpolarizing step of -40 nA changing linearly with time to 

a depolarizing current of 10 nA over a duration of 3 s at 0.2 Hz. The step current 

was -40 nA for 500 ms at 0.3 Hz. Each set of experiments were repeated on 

preparations from separate batches of worms. Cells with constant membrane 

potentials more negative than -20 mV for 20 minutes and a stable input 

conductance of < 3.5 µS were selected for the recordings. 

 

3.3.3 Drugs 

AF2 (H - Lys - His - Glu - Tyr - Leu - Arg - Phe - NH2) [Sigma-Genosys, The 

Woodlands, TX, USA] 1 mM stock solutions were prepared in double distilled water 

every week and kept in aliquots at -20°C. AF2, stock solutions were thawed just 

before use. All other chemicals were obtained from Sigma-Aldrich (MO, USA) and 

Acros-Organics (NJ, USA). 

 

3.3.4 Analysis  

The peak change in membrane potential (δV) and conductance (δG) was 

determined in response to drug applications. The duration of the secondary 

depolarizing response (secondary response) to levamisole was measured as the 

time taken (min) for the peak primary depolarization to decline by 80% (T80). We 

estimated reversal potentials by extrapolating from the membrane I-V plots using 

linear regression. We used the intracellular ionic concentration values of Ascaris 
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estimated by Brading and Caldwell (1971a) to calculate ion-reversal potentials. For 

a single ion species, the reversal potential was calculated from the Nernst equation 

using estimates of the intracellular and extracellular concentrations of that ion. 

When ion-channels selectively permeable to one species of ion open, then the 

membrane potential will move towards the reversal potential for that ion. We 

estimated the reversal potential from linear regression of the relationships between 

injected current and the membrane potential responses (the I-V plots) before and 

during conductance changes. The potential at which these plots cross, is the 

reversal potential of the ion-channel that has opened and is determined by ions that 

flow through the ion-channel. For example, a channel conducting only chloride ions 

will have a measured reversal potential that matches the chloride Nernst potential. If 

the measured reversal potential does not match the Nernst potential of a single ion, 

it implies that more than one ion is involved in generating the potential. 

We defined spikes in A. suum as brief repeating action potentials with amplitude 

greater than 5 mV appearing as a single spike for duration up to 500ms. We 

measured the spike frequency (min-1), amplitude (mV) and spike gradient (mV.s-1). 

We tested the effects of ryanodine on spike parameters during before levamisole 

application and or during the rising phase of the levamisole depolarization. The 

spike gradient was measured on the rising phase and falling phase.  
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3.3.5 Statistics 

All statistical analysis was done using Graph Pad Prism software (version 4.0/5.0, 

San Diego, CA, USA). Continuous recordings which had initial control application/s 

followed by test application/s were compared using paired t-tests. Control and test 

recordings made from separate preparations were compared using unpaired t-tests. 

Chi-squared tests were used to evaluate effects on muscle spiking. 

 

3.4 Results 

3.4.1 The levamisole response has two components: an initial primary 

depolarization followed by a slower secondary depolarizing response 

Fig.1A shows a diagram of the technique used to observe the current-clamp 

responses of a somatic muscle cell; Fig 1B shows a representative current-clamp 

recording in APF-Ringer solution. The resting membrane potential of this cell, 

represented by the dark line in the trace, was -33.2 mV and its input conductance, 

determined from the amplitude of the downward voltage transients to injected 

current, was 1.7 µS. A brief application of levamisole (10 s) produced a primary 

depolarization of 9.3 mV and a change in conductance of 0.06 µS at its peak. After 

the primary depolarization, a slower secondary depolarizing response (the 

secondary response) followed which lasted more than 5 min. We quantified the 

duration of the secondary response as T80 (the time taken for the peak primary 

depolarization to decay by 80%) which was 4.2 min for the experiment in Fig 1B. 



www.manaraa.com

92 

 

During the secondary response, we observed a secondary peak depolarization of 

3.8 mV associated with a conductance increase of 0.07 µS. Similar secondary 

components were observed in more than 20 muscle cell preparations with 1 µM 

levamisole. The primary response is presumably initiated by the opening of N-, L- 

and B- subtypes of nAChRs present on the muscle bag membrane (Martin et al., 

2005; Qian et al., 2006) during the application of levamisole and supported by 

voltage-activated channels (Verma et al., 2007). However, the cause for the slow 

secondary response when levamisole is being continuously washed off by APF-

Ringer is an interesting, but as yet, unexplained effect of levamisole.  
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Fig. 1. A. Diagram showing the placement of the two micropipettes used for current-

clamp and position of the micro perfusion system for continuous perfusion and 

application of drugs. P: microperfusion pipette. I: current-injecting electrode, injects 
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ramp currents or step currents. V: voltage-recording electrode. B: Representative 

trace showing the levamisole response and its 2 components in APF-Ringer 

namely, a primary depolarization and a secondary depolarizing response 

(secondary response). The darkest line of the recording is the membrane potential 

and the downward transients are the responses to injected current. The rapid 

primary depolarization (downward red arrow) is followed by a slow secondary 

response (red vertical arrow and oblique black double arrow). 1 µM levamisole was 

applied for 10 s as indicated by the filled rectangle below the trace. The 

discontinuous horizontal line indicates the original position of the resting membrane 

potential. The width of the trace is a reflection of membrane conductance; it gets 

narrower as membrane-ion channels open. The duration of the secondary response 

(T80) was measured as the time taken (min) for the peak primary depolarization to 

decline by 80%. 

 

3.4.2 AF2 potentiates the secondary response to levamisole 

Fig 2A shows a representative current-clamp trace where AF2 potentiated the 

secondary response to levamisole. There are two control levamisole applications (1 

µM, 10 s) followed by AF2 treatment (1 µM, 2 min) with a brief wash (1 min) then 

two test applications of levamisole. The duration of the secondary response, T80, 

was significantly increased from 4.0 ± 1.4 to 16.1 ± 1.8 min after AF2 treatment (n = 

4, p < 0.05 paired t-test, Fig 2B). Before and after the AF2 application the mean 
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primary depolarization responses were 6.9 ± 1.3 and 8.6 ± 2.1 mV respectively (n = 

4, p > 0.05 paired t-test). 

Fig 2A shows effects of AF2 treatment where we observed waves of conductance 

change during the secondary response. We examined the ionic basis of the 

secondary response by observing the current-voltage relationships and estimating 

the reversal potential. Fig 2C shows the I-V plots (fitted by linear regressions) at the 

two positions in Fig 2 B, after AF2 treatment. These positions were before the test 

application of levamisole as shown by black arrow and during the secondary peak 

as shown by the blue arrow. The estimated reversal potential was -20mV; this value 

did not match that of only one ion, and suggested that more than one ion was 

involved in its generation. The predicted Nernst potentials for K+, Na+, Cl- and Ca2+ 

were EK = -37.7, ENa = +26.7, ECI = -42.9 and ECa = +45 mV (Brading and Caldwell, 

1971a; Martin et al., 1992). 
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Fig. 2. A. Representative current-clamp trace showing AF2 potentiating the 

secondary response to levamisole. There are two applications of levamisole (1 µM) 

before and after AF2 treatment. The control levamisole applications are followed by 
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a 2 min application of AF2 (1 µM) with a brief wash (1 min), subsequently; there are 

two test levamisole applications. The double headed black arrows represent the 

secondary response before and after AF2 treatment. * represents waves of 

conductance change during the secondary response. B. Bar graph comparing T80 

(min) before and after AF2 treatment in APF-Ringer. The secondary response to 

levamisole application was significantly increased after AF2 treatment as indicated 

by the increase in T80 (Fig 2B, n = 4, p < 0.05, paired t-test). C. The black line and 

downward arrow show the control current-voltage plot before the test levamisole 

application and the blue upward arrow and line show the current-voltage plot during 

the secondary peak from Fig. 2A. Plots were fitted by linear regression. The 

reversal potential, estimated by extrapolating the two current-voltage plots are 

shown. The reversal potential, Erev, was -20 mV. 

 

3.4.3 Potentiation continues after the initial effect of levamisole on nAChRs 

We explored the properties of the AF2 potentiated secondary response. 

Levamisole, a membrane permeable drug (Robertson and Martin, 1993), adheres to 

the membrane and may maintain its effect, even after application has stopped. We 

used a high concentration of mecamylamine (30 µM) during the secondary 

response to inhibit any residual levamisole from affecting the secondary 

depolarization, thus isolating the nAChR independent component (Fig 3A). 

Although, as expected, mecamylamine reduced the duration of secondary 

response, we observed that AF2 still increased the duration of the secondary 



www.manaraa.com

98 

 

response (Fig 3 B). The duration of the secondary response, T80 increased 

significantly from 0.4 ± 0.1 min (n = 4) to 0.8 ± 0.1 min (n = 5) after AF2 

pretreatment (p<0.05, unpaired t-test). As an additional test we also measured the 

area under the response curve (RAUC) from the start of mecamylamine application 

to the return of the membrane potential to the resting level in control experiments, 

and in test experiments after AF2. The RAUC increased significantly from 84.6 ± 

13.1 mV.s (n = 4) to 157.2 ± 21.5 mV.s (n = 5) after AF2 pretreatment (p<0.05, 

unpaired t-test). Thus, AF2 maintained its potentiating effect on the secondary 

response after blockade of the levamisole site of action. This indicated the 

activation of downstream pathways which are initiated during the primary levamisole 

response and give rise to the secondary response. We proceeded further to identify 

the ionic basis of the secondary response and its potentiation by AF2. 
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Fig. 3 A. Representative current-clamp traces where mecamylamine (30 µM), a 

nAChR antagonist, was applied immediately after the end of levamisole application 

in the control (n = 4) and the test (n = 5) recordings. The first trace shows a control 

and the second trace shows the test response after AF2. B. Bar graph comparing 

T80 controls and AF2 test pre-treatments in the presence of mecamylamine. AF2 
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potentiated the duration of levamisole secondary response T80, in the presence of 

mecamylamine (p < 0.05, unpaired t-test). 

 

3.4.4 Potentiation requires extracellular calcium 

We investigated the ionic basis of the AF2 potentiated levamisole secondary 

response by substituting calcium with cobalt, a calcium channel blocker. We applied 

cobalt APF-Ringer (Ca2+ free) during the AF2 potentiated secondary response, Fig 

4A. Calcium substitution caused a significant reduction in the duration of the 

secondary response, T80, which was reduced from 16.1 ± 1.8 to 2.6 ± 1.2 min (p < 

0.001, n = 4 unpaired t-test Fig 4B). This indicated that external calcium is required 

for the AF2 potentiation of the secondary response. Calcium entry can initiate 

calcium induced calcium release mediated by RYRs and other calcium dependent 

events. Thorn and Martin (1987) demonstrated the presence of a high-conductance 

calcium-dependent chloride channel in the body muscle membrane of A. suum 

(Thorn and Martin, 1987). This raised the possibility that incoming calcium during 

the primary response leads to activation of these chloride channels. 
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Fig. 4. A. Representative current-clamp trace showing the lack of an AF2 

potentiated secondary response following replacement of calcium with cobalt APF-

Ringer following the end of levamisole application (1 µM). B. Bar graph comparing 
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mean durations of secondary depolarizations, T80, from different preparations 

recorded after AF2 treatment in the presence and absence of calcium (calcium 

replaced using cobalt APF-Ringer). Calcium substitution caused a significant 

reduction in the duration of the secondary response (p < 0.001, n = 4, unpaired t-

test). 

 

3.4.5 Potentiation is sensitive to extracellular chloride  

We removed chloride replacing it with acetate in our chloride free APF-Ringer 

solution. AF2 did not potentiate the levamisole secondary response in the absence 

of extracellular chloride as shown in Fig 5A. There was no significant difference in 

T80 (p > 0.05, paired t-test) (Fig 5B). The duration of the control secondary response 

(T80) was 1.6 ± 0.4 min, while after AF2 treatment it was 2.9 ± 1.2 min (n = 5). Fig 5 

A also shows that there was no increase in membrane conductance during the 

secondary responses following AF2; we found in all five experiments in chloride free 

APF-Ringer, that there was no increase in membrane conductance. These 

experiments showed that in addition to extracellular calcium, the AF2 potentiation 

required extracellular chloride.  
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Fig. 5. A: Representative current-clamp trace showing levamisole (1 µM) 

applications before and after AF2 treatment in the chloride free in APF-Ringer. B. 

Bar graph comparing T80 before and after AF2 treatment. In the absence of 

extracellular chloride, T80 in control and test responses were not significantly 
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different (p > 0.05, n = 5, paired t-test). AF2 did not potentiate the levamisole 

secondary response in the absence of chloride as indicated by T80 measurements. 

 

3.4.6 Caffeine mimics the AF2 potentiation  

Recognizing the importance of extracellular calcium for AF2 potentiation of the 

levamisole secondary response, we explored the possibility of calcium entry 

causing calcium induced calcium release via ryanodine receptors (RYRs). The 

waves of changes in input conductances observed during AF2 potentiation, Fig 2A, 

suggested that release of intracellular calcium mediated by RYRs was involved. We 

used caffeine, an agonist of RYRs, to release calcium from the sarcoplasmic stores 

(Aoki and Ito, 1988; Ito et al., 1989; Sitsapesan et al., 1995). Fig 6A shows a 

representative trace of the effects of 30 mM caffeine on the membrane potential and 

conductance of the muscle cell. Caffeine (30 mM, 4 min) produced a slow 

depolarization of 3.5 mV associated with an increase in conductance of the cell 

membrane (0.9 µS). We compared the current-voltage relationship before caffeine 

application and at the peak of the caffeine response to determine the reversal 

potential. Similar to the AF2 potentiated secondary response Fig 2C, we observed a 

reversal potential of -12 mV during caffeine application, Fig 6B. The estimated 

reversal potential did not match that of one individual ion, suggesting that more than 

one ion was involved. The slow depolarization with a conductance increase had a 

similar time course to the AF2 potentiated levamisole secondary response. Based 

on these observations, we hypothesized that AF2 potentiated the secondary 
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response to levamisole by causing calcium release from the sarcoplasmic stores 

mediated by RYRs. We tested our hypothesis using ryanodine, a RYRs antagonist.  

 

 

Fig. 6. A. Current-clamp trace showing the effect of caffeine (30 mM) on the 

membrane potential and conductance. Note that the application of caffeine 

produced a slow depolarization associated with an increase in conductance. B. The 

membrane potential responses to the injected ramp currents fitted with linear 
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regression before application of caffeine (black arrow Fig. 6 A) and at the peak 

depolarization (blue arrow Fig 6A) in the IV plot. The reversal potential, Erev, 

estimated after extrapolating the membrane potential responses was -12 mV. 

3.4.7 Ryanodine antagonizes the AF2 potentiated secondary response 

We hypothesized that AF2 potentiation involves calcium induced calcium release 

mediated by RYRs. Ryanodine is a plant alkaloid that inhibited calcium induced 

calcium release mediated by RYRs in muscle preparations (Kim et al., 1992; 

Sakube et al., 1993; Maryon et al., 1996). We tested the sensitivity of AF2 induced 

potentiation to application of ryanodine (a RYR antagonist). We applied 0.1 µM 

ryanodine continuously and tested the effects of AF2 on the levamisole responses 

(Fig 7A). We bathed the preparation for 20 min before control and test levamisole 

applications (1 µM, 10 s). We observed that AF2 no longer produced significant 

potentiation of the levamisole secondary response, Fig 7B. The duration of the 

control levamisole secondary response (T80) was 1.7 ± 0.7 min and after AF2 

treatment, it was 3.8 ± 1.6 min (P>0.05, paired t-test, n = 4). This demonstrated the 

involvement of RYRs during the AF2 potentiation of the levamisole secondary 

response. Interestingly, we also observed that prolonged ryanodine exposure 

produced large spikes (Fig 7A, 8A and 8B). We explored some of the properties of 

these spikes induced by ryanodine in our next experiments. 
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Fig. 7. A. Representative current-clamp trace showing levamisole (1 µM) 

applications before and after AF2 treatment in the presence of 0.1 µM ryanodine. 

B. Bar graph depicting T80 (min) in control and test applications. In the presence of 

0.1 µM ryanodine, T80 in control and test responses were not significantly different 

(p > 0.05, n = 4, paired t-test). AF2 did not significantly potentiate the levamisole 
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secondary response in the presence of ryanodine, as indicated 

by T80 measurements. 

3.4.8 Ryanodine increases the frequency of spikes 

Under normal recording conditions (APF-Ringer) spontaneous membrane spikes 

were rare: 1 out of 10 experiments in this data set (example shown in Fig 8A). 

Spikes occurred more frequently during the rising phase of the primary levamisole 

depolarization; 3 out of 10 experiments in this data set. We found that ryanodine 

(0.1 or 1 µM) treatment increased the likelihood of observing spikes both at rest; 6 

out of 10 experiments, and during levamisole application; 10 out of 10 experiments 

(Fig 8A & B). In both cases the difference was statistically significant (p < 0.05, Chi-

square test, two sided) suggesting that ryanodine increases spiking. Next, we 

calculated spike frequency (min-1) for recordings before and after ryanodine 

treatment on the rising phase of the levamisole depolarization. Treatment with 0.1 

µM ryanodine significantly increased spiking from 0.8 ± 0.8 min-1 to 6 ± 2.1 min-1 (n 

= 4, p < 0.05, paired t-test). Treatment with 1 µM ryanodine significantly increased 

spiking from 7.2 ± 4.6 min-1 to 28.9 ± 4.8 min-1 (n = 6, p < 0.05, paired t-test). 

Spiking frequencies at 1 µM were also significantly greater than at 0.1 µM (p<0.01, 

unpaired t-test) demonstrating that the effect of ryanodine on spiking was 

concentration dependent (Fig 8C). We further characterized spike properties by 

measuring amplitude, rate of rise and rate of decay. The lack of spikes prior to 

ryanodine application rendered statistical analysis problematic. However, for the 

experiment shown in Fig 8A, 1 µM ryanodine caused a significant increase in spike 
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amplitude: at rest the amplitude was 6.5 ± 0.3 mV (n = 9) before and 40.4 ± 3.4 mV 

(n = 11) after 1 µM ryanodine (p < 0.0001, unpaired t-test). Similarly, 1 µM 

ryanodine increased both the rate of rise and rate of decay of the spikes. Prior to 

application of ryanodine, the rise rate was 0.7 ± 0.1 mV.ms-1 and the decay rate 

was 0.2 ± 0.02 mV.ms-1 (n = 7); in the presence of 1 µM ryanodine, the rate of rise 

increased to 9.9 ± 0.7 mV.ms-1, and the rate of decay rate to 11.1 ± 0.06 mV.ms-1 

(n = 11). The rates of rise before and after ryanodine application were significantly 

different (p < 0.0001, unpaired t-test), as were the rates of decay (p < 0.0001, 

unpaired t-test). 

Spike action potentials appear to be a combination of voltage activated calcium 

currents, voltage-activated potassium currents (Martin et al., 1992) and calcium-

activated chloride currents (Thorn and Martin, 1987) as modeled by Turner (2001). 

The spike gradient and spike amplitude observations suggest that ryanodine causes 

an increase in the inward voltage-gated calcium current and the outward voltage-

gated potassium current. 
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Fig. 8. A. Representative current-clamp trace showing levamisole (1 µM) 

application before and during ryanodine treatment (1 µM). B. Representative trace 
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of spikes seen at higher time resolution during levamisole application before and in 

the presence of 1 µM ryanodine. The recordings show an increase the spike 

amplitudes (left) and an increase in the gradient of the rising phase of the spikes 

(blue increased in red: right) in the presence of ryanodine. C. Bar graphs showing 

the mean ± S.E. spike frequency during the depolarizing phase of the response to 

levamisole before and in the presence of 0.1 µM ryanodine and in separate 

experiments 1 µM ryanodine. Treatment with 0.1 µM ryanodine significantly 

increased spiking from 0.8 ± 0.8 min-1 to 6 ± 2.1 min-1 (n = 4, p < 0.05, paired t-

test). Treatment with 1 µM ryanodine significantly increased spiking from 7.2 ± 4.6 

min-1 to 28.9 ± 4.8 min-1 (n = 6, p < 0.05, paired t-test). Spiking frequencies at 1 

µM were also significantly greater than at 0.1 µM (p<0.01, unpaired t-test) 

demonstrating that the effect of ryanodine on spiking was concentration dependent. 

3.5 Discussion 

3.5.1 A model for the electrophysiological effects of AF2 and ryanodine on 

levamisole responses 

Trailovic et al (Trailovic et al., 2005) showed that brief application of the 

neuropeptide, AF2, produces long-lasting potentiation of membrane potential and 

contraction responses to acetylcholine along with increased action potential 

generation. The effect on the levamisole response was to extend the duration of the 

depolarization. To explain these observations Trailovic et al (2005), proposed that 

AF2 increases cytosolic calcium by opening of voltage-gated calcium channels and 

stimulating release of calcium from sarcoplasmic stores.  Subsequently Verma et al 
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(Verma et al., 2007) tested the effects of AF2 using voltage-clamp in A. suum 

muscle and found that AF2 potentiates the calcium currents. In this paper, we have 

extended these observations and described the more complex response to 

levamisole. The levamisole response consists of a primary depolarization followed 

by a slower secondary response and we have observed that AF2 potentiates the 

secondary response. We found that the AF2 potentiation was inhibited by calcium 

substitution with cobalt, inhibited by ryanodine, and required the presence of 

extracellular chloride. Application of caffeine produced a slow depolarization and an 

increase in membrane conductance like the secondary response. The reversal 

potentials of the levamisole secondary response when potentiated by AF2 were 

similar to the potentials produced by caffeine. We also observed that ryanodine 

alone produced an increase in the frequency of spiking. We tested for the 

persistence of levamisole following application as an explanation for the secondary 

response and found that application of a high concentration of mecamylamine did 

not abolish the secondary response. Importantly, the mecamylamine insensitive 

component of the secondary response to levamisole was potentiated by AF2. Fig 9 

shows the previously proposed (Trailovic et al., 2005) sites of action of AF2 and in 

addition a currently proposed model that explains observations on the actions of 

ryanodine and AF2. The model proposes that AF2 acts via one or more G-protein 

receptors (Kubiak et al., 2003) to shift the opening of voltage-sensitive calcium 

channels to more hyperpolarized potentials so that they open more readily (Verma 

et al., 2007); the model also proposes that there is sensitization of the RYRs by 

AF2. The model proposes that the primary depolarization is initiated by opening of 
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the nAChRs and the flow of inward current; this depolarization will then secondarily 

activate voltage-activated channels. Calcium will enter the cytoplasm via the 

nAChRs and the voltage-activated channels producing an increase in cytoplasmic 

calcium that activates RYRs and further increase in cytoplasmic calcium. Activation 

of the calcium-activated anion channels (Thorn and Martin, 1987) follows the high 

rise in cytosolic calcium. 

The AF2 potentiated secondary response to levamisole, in APF-Ringer, was 

sometimes associated with a large conductance change which had an oscillating 

pattern suggestive of intracellular calcium waves. The reversal potential, ∼ -20 mV, 

was more depolarized than the predicted chloride reversal potential of -43 mV. We 

found that replacement of the chloride in the APF-Ringer with acetate inhibited the 

increase in conductance of the secondary depolarization, indicating the supporting 

role of the Ca-activated anion channel (Thorn and Martin, 1987). The actual 

reversal potential of the calcium-activated anion channel is likely to be more positive 

than the chloride reversal potential because of the presence of significant amounts 

of intracellular carboxylic acids from anaerobic respiration (Komuniecki et al., 1987) 

that permeates this anion channel (Valkanov and Martin, 1995). A rise in cytosolic 

calcium will, in addition, initiate homeostatic mechanisms that then lead to reduction 

of the cytosolic calcium, returning it to control levels; these mechanisms are 

expected to include the high capacity, low affinity Na-Ca exchanger and the low 

capacity high affinity calcium-ATPase systems that remove cytosolic calcium 

(DiPolo and Beauge, 2007). 
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Fig 9. Proposed model and sites of action whereby AF2 modulates the responses 

to levamisole [1]. The primary depolarization follows levamisole binding to nAChRs 

and their opening to allow Ca++ and Na+ to enter the cell. The levamisole 

secondary response is initiated by the primary depolarization and involves activation 

of voltage-gated calcium channels (VACCs), ryanodine receptors (RyRs) and 

calcium-activated anion channels. VACCs are activated by the primary 

depolarization and allow more calcium to enter the cell. Increased intracellular 

calcium triggers calcium induced calcium release (CICR) from the sarcoplasmic 

reticulum (SR) and are gated by the ryanodine channels (RyRs). The calcium-

activated anion channels are also activated during the cytoplasmic rise in calcium 

concentration. The calcium induced calcium release can inhibit the voltage-
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activated calcium channels (VACCs) as a negative feedback (- ve). *: AF2 

potentiates the levamisole secondary responses by increasing voltage-activated 

calcium entry through VACCs [19] and; * by sensitizing the RyRs to release more 

calcium from the sarcoplasmic reticulum in response to the calcium entry through 

the nAChRs and VACCs. 

 

3.5.2 Ryanodine receptors and effects of AF2 

In the following discussion, we suggest that AF2 increases cAMP in muscle 

cytoplasm (Reinitz et al., 2000) and that the raised camp leads to sensitization of 

RYRs and to the increases in cytoplasmic calcium. Nematode RYRs, like those of 

other eukaryotes are homo-tetramer calcium release channels found in the 

membrane of sarcoplasmic reticulum and that bind the alkaloid ryanodine (Bennett 

et al., 1996). In C. elegans, a single gene, unc-68, encodes for RYRs. C. elegans 

RYRs are located near the muscle surface membrane in vesicles that resemble 

junctional sarcoplasmic reticulum of the vertebrate striated muscle (Maryon et al., 

1996) and the RYRs of C. elegans show 42% homology to mammalian RYRs 

(Sakube et al., 1993). RYRs channels in C. elegans have two conductance states, a 

215 pS state and a 78 pS state; ryanodine at a concentration of 4 µM locks the 

RYRs channel in the 78 pS (sub conductance state) preventing transition between 

the states (Kim et al., 1992). The locking of the channel in the sub conductance 

state can lead to emptying of the calcium stores in the SR so that the effect of 

application of ryanodine on C. elegans is to produce an incomplete hyper 
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contraction and overall paralysis (Kim et al., 1992). In our muscle strips of A. suum 

however, ryanodine did not produce hyper contraction but reduced the maximum 

force of levamisole-induced contractions. The lack of contraction may be explained 

if there is slow emptying of the SR in A. suum which could be accommodated by 

homeostatic mechanisms like the sodium-calcium exchanger (Robertson et al., 

2010). 

RYRs release calcium from sarcoplasmic reticulum in vertebrate smooth muscle. 

Triggers for this release include an increase in cytosolic calcium and other ligands 

like caffeine (Fabiato and Fabiato, 1977; Kimball et al., 1996). In regular vertebrate 

skeletal muscle, RYRs release calcium in response to each action potential as a 

result of being coupled directly to the T-tubule system (Rios et al., 1991; Yano et al., 

1995). In Ascaris suum however, we know from the work of Weisblat et al., (1976) 

that contraction of body muscle is not coupled to each spike, rather contraction is 

coupled to slower depolarizations referred to as modulation waves. In C. elegans 

RYRs play an important, but non-essential role in excitation-contraction coupling: 

calcium entry through plasma membrane voltage-activated channels can initiate 

contraction in the absence of RYRs (Kimball et al., 1996; Maryon et al., 1996). Thus 

RYRs enhance contraction in nematode body muscle by amplifying the calcium 

signal initiated by opening of nAChRs and voltage-activated calcium channels in the 

plasma membrane (Maryon et al., 1996). AF2 has been shown to produce a long-

lasting increase in muscle cytoplasmic cAMP in A. suum (Reinitz et al., 2000). 

Activation of cAMP-dependent protein kinase-A can phosphorylate RYRs and 
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reduce the effects of the RYRs inhibitor proteins (FKBPs) (Petrovic et al., 2008). By 

this mechanism, AF2 could increase the probability that RYRs open in response to 

cytoplasmic calcium (Petrovic et al., 2008) and in turn increase contraction in 

response to a nicotinic anthelmintic like levamisole. 

 

3.5.3 Ryanodine effects on spiking  

We have observed that ryanodine increased the frequency of spiking and in two 

preparations, where spikes were present before the application of ryanodine; 

ryanodine increased the gradient of the rising phase of the spikes. Spikes in A. 

suum are produced by inward calcium currents and not sodium currents (Weisblat, 

1976; Verma et al., 2007). Ryanodine increased the gradient of the rising phase of 

the spike (dV/dt) which is taken to be proportional to the inward calcium current 

(Martin et al., 1992; Turner, 2001) indicating that ryanodine increased the inward 

calcium current. It is of interest to consider what the mechanism for the spiking and 

increased calcium current could be. Voltage-activated calcium channels are subject 

to calcium-induced inactivation mediated by calmodulin (Catterall, 2000; Dunlap, 

2007). Since ryanodine inhibits the calcium-induced calcium release (we believe by 

emptying the calcium SR store), ryanodine could lead to the removal of inhibition of 

calcium channels by calmodulin. Other less likely mechanisms include ryanodine 

modulation of presynaptic transmitter release or inhibition of potassium channels in 

muscle. Modulation of presynaptic transmitter release does not seem likely because 
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ryanodine (100 µM) has been shown to reduce excitatory neurotransmitter release 

in C. elegans (Liu et al., 2005); this would be seen as an inhibitory effect not an 

excitatory effect. With regard to an effect on potassium channels, we found that 

ryanodine did not affect the resting membrane potential of A. suum muscle nor was 

it observed to have an effect on the duration of the A. suum spikes. A closing of 

potassium channels would be expected to depolarize the cell membrane, to 

decrease the rate of spike decay and increase spike duration; it did not. To our 

knowledge, there are no reports of direct effects of ryanodine on C. elegans 

potassium channels. However, we cannot rule out an indirect effect via changes in 

cytosolic calcium having effects on calcium-activated potassium channels (Salkoff 

et al., 2005). Taken together, these observations suggest that ryanodine affects 

spiking via an action on calcium channels. Despite this increase in spiking, we have 

observed that ryanodine does not increase the force of muscle contraction 

[Robertson et al, this issue] demonstrating the physiological separation of spikes 

and contraction in A. suum muscle. 

 

3.5.4 Nematode ryanodine receptors and levamisole resistance 

We have seen that the force of levamisole induced contractions in A. suum is 

sensitive to ryanodine as is the secondary response of levamisole following AF2 

treatment. The genetic basis of resistance to levamisole has been studied in C. 

elegans where it has been found that null-mutants of components of the levamisole-

signaling excitation-contraction cascade cause resistance (Dick et al., 2008). 
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Components of the levamisole-signaling pathway include the subunits of the 

levamisole receptor: UNC-38, UNC-63, UNC-29, LEV-1 and LEV-8. They also 

include the RYRs encoded by the unc-68 gene. unc-68 C. elegans null-mutants 

show reduced sensitivity to levamisole (Robertson and Martin, 2007). It is likely that 

null-mutants of unc-68 of parasitic nematodes would also show reduced response 

to levamisole because the reduction in gmax (Robertson et al., 2010). Mutations of 

RYRs in parasitic nematodes are predicted to reduce the response to treatment with 

nicotinic anthelmintics like levamisole and pyrantel and to be associated with 

resistance 
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CHAPTER 4. DERQUANTEL AND ABAMECTIN:  EFFECTS AND 

INTERACTIONS ON ISOLATED TISSUES OF ASCARIS SUUM 

A paper to be submitted to European Journal of Pharmacology, 2012 

 

Sreekanth Puttachary1, Sasa M.Trailovic2, Alan P. Robertson3, David P. 

Thompson4, Debra J. Woods4 and Richard J. Martin 3,5 

  

4.1 Abstract 

StartectR is a novel anthelmintic combination of derquantel and abamectin, Fig 1, 

which selectively paralyses parasitic nematodes. It is hypothesized that derquantel 

and abamectin interact pharmacologically. We investigated the effects of 

derquantel, abamectin and their combination on somatic muscle nicotinic 

acetylcholine receptors (nAChRs) and pharyngeal muscle glutamate gated chloride 

receptor channels (GluCls) of Ascaris suum. We used muscle-strips to test the 

effects of  0.3 µM abamectin, 1 µM  derquantel, and 0.3 µM abamectin + 1 µM 

derquantel together on the contraction responses to different concentrations of 

acetylcholine.  We found that abamectin reduced the response to acetylcholine, as 

did the derquantel.  When abamectin was added along with derquantel, the 

inhibition of the acetylcholine response was increased.  A two-micropipette current-

clamp technique was then used to study the electrophysiological effects of the 

anthelmintics on: 1) acetylcholine responses in somatic muscle flaps and; 2) L-

glutamate responses in pharyngeal preparations.  On somatic muscle, application of 
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derquantel (0.1 - 30 µM) produced a potent (IC50 = 200 nM) reversible antagonism 

of acetylcholine depolarizations. Application of abamectin (0.3 µM) produced 

inhibition of acetylcholine depolarizations that were slow in onset.  To examine the 

electrophysiological interactions of abamectin and derquantel, we compared effects 

of these drugs on muscle preparations pretreated for 30 minutes with these drugs.  

The effect of the combination was greater than either drug alone and suggested 

synergism. On the pharynx, application of derquantel produced no significant effect 

by itself or on responses to L-glutamate. Abamectin increased the input 

conductance of the pharynx in a concentration-dependent manner (EC50: 400 nM).  

The effects of abamectin and L-glutamate on conductance were additive when 

applied together. Our study shows that derquantel and abamectin do not interact at 

L-glutamate receptors on the pharynx but that they do interact on acetylcholine 

receptors of the somatic muscle.  

Key words: abamectin, derquantel, combination, interaction, nAChRs and GluCls.  
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4.2. Introduction 

Nematode parasites cause severe problems for humans and animals. Globally, 

more than a billion people are infected with ascariasis, hook worms, and whipworms 

which are soil transmitted gastro-intestinal (GI) nematodes. These nematode 

infections are endemic to a majority of tropical countries (Savioli and Albonico, 

2004; Hotez et al., 2007a). Similar GI nematodes are also present in most domestic 

animals. The high global prevalence of nematode infections in both humans and 

livestock results in debility, reduced productivity, severe economic losses and 

contributes to poverty (de Silva et al., 2003; Kaplan, 2004b). 

In the absence of effective vaccines and sanitation, anthelmintics are used for 

treatment and prophylaxis.  Unfortunately, the regular use of anthelmintic drugs has 

resulted in the appearance of anthelmintic resistance in domestic animals and 

recently in humans. In Australia (Edwards et al., 1986a, b; Jackson and Coop, 

2000), Paraguay (Maciel et al., 1996; Waller et al., 1996) and S. Africa (van Wyk et 

al., 1997), anthelmintic resistance threatens the economics of the entire sheep 

industry. In humans, GI nematodes have shown resistance to anthelmintics 

following mass drug administration (MDA) programs in endemic regions (Ismail et 

al., 1996; De Clercq et al., 1997; Reynoldson et al., 1997; Ismail et al., 1999). The 

limited number of anthelmintics available for therapy, coupled with the onset of 

resistance in parasites poses a serious threat to human health and livestock 

(Kaplan, 2004b; Jones and George, 2005).  

A majority of anthelmintics exert their effect selectively on membrane ion-channels 

of nematode parasites, disrupting normal opening. Nicotinic acetylcholine receptors 
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(nAChRs) are present on nematode somatic muscles and nerves. As a result, 

anthelmintics that act as selective agonists at muscle nAChRs produce spastic 

paralysis of the worms, while selective antagonists produce flaccid paralysis. The 

nAChR agonists  include: the imidazothiazoles (levamisole); the  

tetrahydropyrimidines (pyrantel, morantel & oxantel) (Martin and Robertson, 2007) 

and; the amino-acetonitrile derivatives (monepantel) (Kaminsky et al., 2008).  The 

nAChR antagonists include the spiroindoles (derquantel, Fig. 1) (Robertson et al., 

2002).  Inhibitory glutamate gated chloride channels (GluCls) are present on 

nematode pharyngeal muscle (Martin, 1996) and the avermectins (ivermectin, 

doramectin, abamectin) and milbemycins (moxidectin, milbemycin) increase 

opening of the GluCls (Martin, 1996; Wolstenholme and Rogers, 2005b), inhibiting 

pharyngeal pumping and feeding (Sheriff et al., 2002).  

If control of parasitic nematodes relies on only a single class of anthelmintic drug, 

the selection pressure for resistance is strong (Sangster, 2003). However, if a 

combination of anthelmintic drugs is used from different drug classes, the 

development of resistance is predicted to be slower because simultaneous 

development of resistance for two classes of anthelmintic is required (Smith, 1990; 

Barnes et al., 1995; Albonico et al., 2003; Coles, 2005; Stepek et al., 2006). The 

combination of two or more anthelmintics also has the potential of producing 

additive or synergistic effects, increasing the efficacy of the combination.  

In this study, we have used isolated tissues from Ascaris suum to study effects and 

examine the interactions of derquantel and abamectin.  We used somatic muscle 

flaps for contraction assays. We used somatic muscle flaps and pharyngeal 
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muscles for electrophysiological assays. We studied the effects of derquantel alone 

and abamectin alone and both in combination; we found that the effects of 

derquantel and abamectin were additive and suggested synergism on the nAChRs 

of the muscle but derquantel did not affect the pharynx and effects were not additive 

on the GluCls of the pharynx.     

 

4.3. Materials and methods 

Adult A .suum were collected weekly from the JBS packing plant at Marshalltown, 

Iowa. Worms were maintained in Locke's solution [composition (mM): NaCl 155, 

KCl 5, CaCl2 2, NaHCO3 1.5 and glucose 5] at a temperature of 32 °C. The Locke's 

solution was changed twice daily and each batch of worms was used within 4 days 

of collection.  

 

4.3.1 Muscle-flap for contraction 

We prepared 1 cm muscle body flaps by dissecting the anterior part of the worm, 2–

3 cm caudal to the head. Each flap was monitored isometrically by attaching a force 

transducer in an experimental bath maintained at 37OC containing 10 ml Ascaris 

Perienteric Fluid Ringer/APF Ringer (mM): NaCl, 23; Na-acetate, 110; KCl, 24; 

CaCl2, 6; MgCl2 5; glucose, 11; HEPES, 5; pH 7.6 with NaOH and 0.1% DMSO and 

bubbled with nitrogen. After dissection, the preparations were allowed to equilibrate 

for 15 min under an initial tension of 0.5 g. Different concentrations of acetylcholine 

were then added to the preparation and the maximum contraction observed before 
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washing and subsequent application of the next concentration of acetylcholine. The 

responses for each concentration were expressed as a % of the maximum tension 

produced by each individual flap preparation. The effects of abamectin, and 

derquantel on control acetylcholine dose-response plots were determined. 

Contraction was monitored on a PC using a MacLab interface. The system allows 

for recording, displaying and analysis of experimental data. Sigmoid dose-response 

curves for each individual flap preparation at each concentration of antagonist were 

described by the Hill equation. 

 

4.3.1a Muscle flap for current-clamp recording  

We also prepared the 1 cm muscle body flaps for electrophysiology by dissecting 

the anterior part of the worm, 2–3 cm caudal to the head which were then pinned 

onto a Sylgard™ contained in lined double jacketed bath chamber maintained at 35 

°C by an inner circulation of warm water (Fisher scientific Isotemp 3016H, PA, 

USA). The preparation was continuously perfused, with APF-Ringer, composition 

(mM): NaCl 23, Na-acetate 110, KCl 24, CaCl2 6, MgCl2 5, glucose 11, and HEPES 

5; NaOH or acetic acid was used to adjust the pH to 7.6; 0.1 % DMSO was also 

added to dissolve the abamectin and derquantel. The incoming perfusate was pre-

warmed to 35 °C with an in-line heating system (SH 27B Warner instruments, CT, 

USA) before application. The rate of perfusion was 3.5–4 ml min−1 through a 20 

gauge needle placed directly above the muscle bag recorded from. Test 

compounds were dissolved in APF-Ringer and applied as described in the results. A 

two-microelectrode current-clamp technique was employed to examine the 
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electrophysiological effects in the bag region of somatic muscle. We used 3 M 

potassium acetate in the micropipettes which had resistances of 20–30 MΩ. The 

recordings were made by impaling the bag region of somatic muscle with two 

microelectrodes, namely current-injecting (I) and voltage-recording electrodes (V). 

The step current was -40 nA was injected for 500 ms at 0.3 Hz. All experiments 

were performed using an Axoclamp 2A amplifier, a 1320A Digidata interface and 

Clampex 9 software (Molecular Devices, CA, USA). All data were displayed and 

analyzed on a PC based desktop computer. Our somatic muscle preparations had 

resting membrane potentials greater than -25 mV and the resting input 

conductances less than 4 µS. 

 

4.3.2 The pharyngeal muscle preparation  

The pharynx of Ascaris is a large muscular tube amenable to electrophysiological 

study. The cuticle and the muscle in the head region were dissected out to expose 

the pharynx. The beginning of the intestine was pinned to the muscle and the cuticle 

to secure the pharynx for recording. We increased the stability of the preparation by 

using calcium-free APF Ringer to limit contraction and by lowering the temperature 

of the incoming perfusate to 28°C. A microperfusion needle with a flow rate of 3.5–4 

ml min−1 was used for perfusion of the pharynx. The recordings were made by 

impaling the pharynx at the posterior region of pharynx with two microelectrodes, 

namely current-injecting (I) and voltage-recording electrodes (V). The step current 

was -1000 nA was injected for 500 ms at 0.3 Hz. Our pharyngeal muscle 
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preparations had resting membrane potentials greater than -15 mV and the resting 

conductances less than 250 µS. Test compounds were dissolved in the calcium free 

APF-Ringer and applied as described in the results.   

 

4.3.3 Drugs 

Derquantel (Der) and abamectin (Aba) were provided by Pfizer Animal Health 

(Pharmacia and Upjohn Co., Kalamazoo, MI). Acetylcholine and L-glutamic acid as 

the monosodium salt hydrate obtained from Sigma-Aldrich (MO, USA). GABA was 

obtained from Calbiochem (EMD Serono, Inc, Rockland, MA, USA). 

 

4.3.4 Analysis 

In contraction assays, sigmoid concentration response curves for each were 

described by the Hill equation: 

  % response = 1/ (1+ [EC50/Xa]
 nH),                equation 1, 

where EC50 is the concentration of agonist (Xa) producing 50% of the maximum 

response and nH is the Hill coefficient (slope).  Prism 4.0/5.0 (GraphPad Software, 

San Diego, CA.) was used to estimate the constants EC50 and nH in equation 1, by 

non-linear regression for each preparation.  

In electrophysiology, we used parameters which were consistent and measurable 

across different batches of worms in order to describe and study the responses to 

the drugs. In somatic muscle preparations we determined changes in resting 
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membrane potential and in pharyngeal preparations we determined changes in the 

resting conductance. Our experiments were spread across different batches of 

worms to minimize the batch variations.    

We calculated fractional inhibition of the acetylcholine induced depolarizations to 

determine the different interactions (additive, antagonistic or synergistic) of drugs on 

the somatic muscle nAChRs (Greco et al., 1996). We calculated: the mean of the 

depolarizations to each concentration of acetylcholine (control dose-response); the 

mean of the depolarizations (±S.E., standard error) to each of the concentrations of 

acetylcholine in the presence of derquantel (derquantel effect); the mean (±S.E.) of 

the depolarizations to each concentration of acetylcholine in presence of abamectin 

(abamectin effect).  

We determined the fractional inhibition produced by derquantel alone (the reduction 

in membrane potential response ÷ control membrane potential response) and 

abamectin alone at each concentration of acetylcholine. The fractional inhibition 

produced by derquantel alone was denoted as Fd. Similarly, the fractional inhibition 

produced by abamectin alone was denoted Fa.  The fractional inhibition produced 

by abamectin when derquantel is already present was calculated from multiplying 

Fa, by the remaining possible response, 1-Fd as Fa*(1-Fd). The calculated total 

fractional additive inhibition produced by the mixture of the two drugs is then: 

Fd+Fa (1-Fd)    equation 2. 

This equation calculates the effects of two drugs that are behaving additively (Greco 

et al., 1996).  We compared this calculated fractional additive inhibition with the 

observed fractional inhibition to detect synergism.  
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4.3.5 Statistics 

All statistical analysis was done using Graph Pad Prism software. Mean values ± 

S.E. values are quoted throughout.  Paired t-tests were used to test control 

recordings that were followed by test recordings from the same cell. Unpaired t-

tests were used to compare control and test responses recorded from separate 

cells or preparations.  
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Fig 1. Structures of derquantel and abamectin. A. Structure of derquantel. B. 

Structure of abamectin. Abamectin is a mixture containing more than 80 % 

avermectin B1a and less than 20 % avermectin B1b. Avermectin B1a differs from 

avermectin B1b by a functional group at the ‘R’ position. 
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4.4. Results  

4.4.1. Contraction: Inhibitory effects of derquantel and abamectin 

Fig 2A shows a representative trace of the effects of adding increasing 

concentrations of acetylcholine and washing on isometric contractions of an Ascaris 

muscle flap preparation. When 1 µM derquantel was added there was little or no 

change in the resting contraction but the responses to the concentrations of 

acetylcholine were inhibited. When 0.3 µM abamectin was added in addition to 

derquantel, the response to the concentrations of acetylcholine were further 

inhibited. Washing reversed the inhibition but did not completely return the 

contractions to the control levels even after 10 minutes. 

Fig 2B shows the concentration-response plots (mean ± S.E.) from 11 similar 

experiments. The control EC50 for acetylcholine was 7 µM with a gmax of 3.7 g and 

the inhibitory effect of 1 µM derquantel was to increase the EC50 to 52 µM with little 

change in the gmax to 3.4 g. When 0.3 µM abamectin was added there was further 

inhibition but with only a small change in the EC50 to 68 µM but there was a bigger 

reduction in gmax to 2.4 g. Washing the preparation partially reversed the inhibition 

so that the EC50 became 14 µM and the gmax increased to 3.2 g. Thus the main 

effect of derquantel was to increase EC50, like a competitive antagonist, while the 

main effect of abamectin was to reduce gmax, like a non-competitive antagonist.  
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Fig. 2. A. Isometric contraction of Ascaris suum muscle strips produced by 

application of increasing concentrations of acetylcholine and antagonism by 1µM 

derquantel (red bar), 1µM derquantel+0.3µM abamectin (green bar) and wash (blue 
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bar). Note that derquantel decreases the responses to acetylcholine and that the 

addition of abamectin increases the inhibition. B. The concentration-depolarizing-

response plot of acetylcholine showing mean ± S.E. bars (n=11). Control (black); in 

the presence of 1µM derquantel (red); 1µM derquantel+0.3µM abamectin (green) 

and wash (blue). Note that abamectin increases the inhibition produced by 

derquantel.  

 

4.4.2. Electrophysiology: derquantel inhibits muscle nAChRs 

Derquantel (0.1 - 30 µM) by itself produced little or no significant change in the 

muscle membrane potential or conductance.  However, derquantel had a rapid 

(within 4 min) reversible inhibitory effect on acetylcholine depolarizations under 

current-clamp.  Fig. 3A shows a representative trace of the inhibition produced by 

short application of 0.1 µM derquantel: the mean (n=9) depolarizations were 

decreased from 7.2 ± 1.0 mV to 4.6 ± 0.5 mV by derquantel and recovered to 7.0 ± 

1.1 mV on wash.  The bar chart in Fig. 3B summarizes results from 9 separate 

preparations: derquantel produced a significant inhibition (p = 0.001, paired t-test) 

which was reversible on washing (p = 0.004, paired t-test). Fig 3C illustrates the 

concentration-dependent inhibition of these acetylcholine depolarizations by 

derquantel and shows that the IC50, was 200 nM (n = 18). 
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4.4.2a  Effects of derquantel on the ACh concentration response 

Fig 4A is representative trace showing the concentration-dependent effects of 

acetylcholine (0.3 to 30 µM, each applied for 15s) in a control preparation. Fig 4B 

shows representative trace of responses to acetylcholine applications in the 

presence of derquantel (1 µM). The control EC50 was 4.5 µM and the maximal 

response (Rmax) was 21 mV (n = 11), Fig 5A.  With derquantel the EC50 was 10.2 

µM and the Rmax of 14.5 mV (n = 8). The major effect of derquantel was to produce 

a shift to the right of the EC50 like a competitive antagonist.    
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Fig 3. Current-clamp setup for making recordings from the somatic muscle and the 

pharynx in A .suum. A. A diagram the position of the positioning of I; current 
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injecting electrode and V; voltage recording electrode for making current clamp 

recording from the bag region of A .suum muscle cell. P; perfusion needle over the 

muscle bag for a localized perfusion of APF Ringer and or drugs, E; the earth 

electrode to complete the circuit. B. Representative trace shows depolarizations to 

three control applications of 3 µM acetylcholine (15s) vertical arrows. The 

applications of acetylcholine were repeated in the presence 0.1 µM derquantel after 

exposure (4 min) of the preparations to derquantel. C. Bar chart summarizing the 

results show a significant reduction in amplitude of control acetylcholine 

depolarizations in the presence of derquantel (0.1 µM) (p < 0.001, paired t-test, n = 

9). Note that during the wash period the acetylcholine depolarizations recovered 

when compared to the test (p = 0.004, paired t-test, n = 9).  

D. Concentration-inhibition plot for derquantel to inhibit 3 µM acetylcholine induced 

depolarizations. Concentration-inhibition responses were fitted with non-linear 

regression to determine the IC50. The IC50 determined from this study was 0.2 µM (n 

= 18).  

 

4.4.2b Effects of abamectin on the ACh concentration response 

Abamectin application by itself produced no significant change in membrane 

potential (p > 0.05, one sample t-test, n=9). Fig 4C shows a representative trace of 

the effects of abamectin (0.3 µM) on the ACh concentration responses. In the 

presence of abamectin, the EC50 was 4 µM and the Rmax of 12 mV (n = 9). 

Comparison with the control, Fig. 5A, shows that the major effect of abamectin was 



www.manaraa.com

137 

 

to produce a reduction in the Rmax without changing the EC50 in the manner of a 

non-competitive antagonist (negative allosteric modulator).    

 

4.4.2c  Combination can produce greater than additive inhibition  

When we tested the effects of 0.3 µM abamectin with + 1 µM derquantel on the 

acetylcholine responses, we found that the inhibition was greater than produced by 

either drug alone, Fig 4D & Fig 5A. The EC50 was 10.1 µM and the Rmax was 7.5 mV 

in the presence of the combinations (n = 7). The effect of the combination was to 

produce both a shift to the right of the EC50 and a reduction in Rmax.    

We determined the fractional inhibition (equation 2) of the acetylcholine responses 

produced by derquantel, abamectin and the combination.  Fig 5B shows a plot of 1-

fractional inhibition plotted against the concentration of acetylcholine. The dashed 

line in Fig 5B indicates the predicted line of additive inhibition for derquantel and 

abamectin (Greco et al., 1996).  Note that the combination of derquantel and 

abamectin Fig 5B actually produces a greater than additive effect at higher 

concentrations of acetylcholine. This effect is predicted if the two drugs act at 

separate sites on the acetylcholine receptor: derquantel acting mostly as a 

competitive antagonist and abamectin acting as a non-competitive antagonist.     
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Fig 4. Representative traces showing acetylcholine concentration responses of 

controls and in the presence of 1 µM derquantel, 0.3 µM abamectin and the 

combination. Increasing concentrations of acetylcholine (0.3 - 30 µM) shown in 

black arrows were applied for 15s in controls. In test, the acetylcholine applications 
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followed 30 min pretreatment of the preparations with the drugs. A. Representative 

trace, one from 11 such experiments, shows a concentration dependent increase in 

the depolarizations to the acetylcholine applications in the controls. B. 

Representative, one from 8 such experiments trace shows, a reduction in 

acetylcholine induced depolarizations in the presence of derquantel. C. 

Representative trace, one from 9 such experiments shows a reduction in the 

acetylcholine induced depolarization in the presence of abamectin. D. 

Representative trace, one from 7 such experiments shows a reduction in 

acetylcholine induced depolarizations in the presence of the combination.  
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 Fig 5. Acetylcholine concentration-depolarization and fractional inhibition of 

acetylcholine depolarization plots in the presence of derquantel, abamectin and the 

combination. A. Concentration-depolarization responses for acetylcholine (0.3 - 30 
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µM, 15 s) in the controls fitted with non-linear regression ●. The test consists of 

increasing concentrations of acetylcholine were applied after a 30 min pretreatment 

of the preparations with 1 µM derquantel ▲, 0.3 µM abamectin ▼ and the 

combination (1 µM derquantel + 0.3 µM abamectin) ●. The EC50 and Rmax of 

acetylcholine in the controls was 4.5 µM and 20.6 mV (n = 11). The EC50 and Rmax 

of acetylcholine in the presence of derquantel was 10.2 µM and 14.5 ± 3.3 mV (n = 

8). The EC50 and Rmax of acetylcholine in the presence of abamectin was 4 µM and 

12 ± 1.7 mV (n = 9). The EC50 and Rmax of acetylcholine in the presence of the 

combination was 10.1 µM and 7.5 ± 1.2 mV (n = 7). B. The fractional inhibition of 

acetylcholine depolarization in the presence of derquantel ▲, abamectin ▼and the 

combination ●. The dashed black line shows the predicted line for the additive 

effect of derquantel and abamectin in inhibiting acetylcholine depolarizations. The 

fractional inhibition of acetylcholine response in the presence of the combination is 

greater than the predicted line of additive effect.  

 

4.4.3 No interaction at GABA receptors on somatic muscle 

GABA is an inhibitory neurotransmitter that opens GABA gated chloride channels 

on the somatic muscle resulting in hyperpolarization. We tested the effects of 

derquantel, abamectin and the combination, applied for 4 min, on the 

hyperpolarizing response to GABA (10 µM, applied for 15s). We did not observe a 

significant (p > 0.05, paired t-test) effect of derquantel (1 µM, n = 4), abamectin (0.3 
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µM, n = 5) or the combination (1 µM derquantel+ 0.3 µM abamectin, n = 4) on the 

GABA responses. Our study suggests that the combination does not interact on 

GABA gated chloride receptor channels on the somatic muscle of Ascaris.  

 

4.4.4 Abamectin activates GluCls of the pharynx 

The Ascaris pharynx contains inhibitory glutamate-activated chloride channels 

(GluCls, Martin 1996). Abamectin activated these channels when we applied 

abamectin for 2 min in cumulative doses in concentrations ranging from 0.01 to 1 

µM. It produced hyperpolarization and a concentration-dependent increase in 

membrane conductance of the pharyngeal muscle, Fig 6B &D. The 

hyperpolarization varied between preparations and depended on the initial resting 

membrane potential. The resting input conductance of these preparations was 

186.5 ± 18 µS and the change in conductance at the end of 1 µM abamectin (the 

highest concentration) was 282.6 ± 62.1 µS (n = 4). The EC50 for the concentration-

conductance response for abamectin was 0.4 µM.  
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Fig 6. Recording technique used for the pharynx to record the conductance 

changes produced in response to cumulative applications of abamectin and 
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derquantel in pharyngeal preparations. A. Diagram of the technique. Positioning of:  

I, current injecting electrode and; V, voltage recording electrode in the terminal bulb 

of pharynx. P, perfusion needle above the pharynx for a localized perfusion of 

calcium free APF Ringer and or drugs E, the earth electrode to complete the circuit. 

The cumulative applications of abamectin (0.01 to 1 µM) and derquantel (0.1 to 10 

µM).  

B. Representative trace showing the conductance changes produced in response to 

cumulative applications of abamectin. C. Representative trace showing the 

conductance changes produced by the cumulative applications of derquantel. D. 

The concentration conductance plots fitted with non-linear regression for abamectin 

▼ and derquantel ▲. The EC50 for abamectin was 400 nM (n = 4). It was not 

possible to fit non-linear regression for derquantel due to a little or no conductance 

change produced by derquantel (one sample t-test, n = 4).  

 
4.4.5. Derquantel does not affect GluCls of the pharynx 

Derquantel was applied for 2 min in cumulative doses starting at a concentration of 

0.1 and increasing up to10 µM. Fig 6C & D shows that derquantel produces no 

significant effect on the membrane potential or input conductance of the pharyngeal 

muscle (n = 4).  We also tested the effects of cumulative-concentration application 

of abamectin in the presence of 0.1 and 1 µM derquantel, each set of 4 

preparations.  In the presence of 0.1 µM, the EC50 of abamectin was 0.3 µM; in the 

presence of 1 µM derquantel the EC50, was also 0.3 µM.  Derquantel did not change 
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Log EC50 values for abamectin (p > 0.05, F-test) suggesting that derquantel does 

not interact with abamectin at the GluCls of the pharynx.  

We tested the effect of derquantel on the conductance changes produced by 

applications of 10 µM and 100 µM L-glutamate for 15s.  Fig 7 A shows a 

representative trace of the L-glutamate control responses and L-glutamate 

responses in the presence of 1 µM derquantel. The input conductance response to 

10 µM L-glutamate was 32 ± 8 µS (n = 4) and to 100 µM L-glutamate it was 126 ± 

43 µS (n = 4).  In the presence of 1 µM derquantel, the input conductance response 

to 10 µM L-glutamate was 51 ± 18 µS (n = 4) and the response to 100 µM L-

glutamate was 116 ± 37 µS (n = 4). The presence derquantel did not significantly 

change the L-glutamate (10 or 100 µM) responses (p > 0.1, paired t-test). These 

observations suggest that derquantel does not interact with L-glutamate at the 

GluCls of the pharynx.   
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Fig 7. L-glutamate responses in the presence of derquantel in pharynx. Unfilled and 

filled arrows represents 15s applications of 10 µM L-glutamate and 100 µM L-

glutamate respectively. The applications of L-glutamate followed after 4 min of 1 µM 

derquantel treatment. Representative trace shows control L-glutamate responses 

and those in the presence of derquantel (1 µM). Note that there is no effect of 

derquantel on the L-glutamate responses. 

 

4.5 Discussion 

4.5.1 Derquantel is a potent competitive nematode nAChR antagonist  

Robertson et al. (2002) used an Ascaris muscle strip contraction assay to describe 

the antagonistic effects of derquantel against a panel of cholinergic anthelmintics.  
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Derquantel behaved like a competitive antagonist. The pA2 values for a panel of 

nicotinic agonists and cholinergic anthelmintics (Martin et al., 2003; Martin et al., 

2004) were: methyridine (5.3), oxantel (5.4), thenium (5.5), levamisole (5.7), 

pyrantel (5.9), nicotine (6.3) and bephenium (6.5). Analyses of these observations 

lead to the conclusion that there are 3 subtypes of nAChR present in Ascaris 

muscle strips. There is the N-subtype preferentially activated by nicotine and 

oxantel; there is the L-subtype preferentially activated by levamisole and; the B-

subtypes preferentially activated by bephenium.  In our present contraction studies 

with acetylcholine, we found that 1 µM derquantel shifted the acetylcholine EC50 

from 7 µM to 52 µM giving a dose-ratio of 7.4 and pA2 of 6.8 (Schild equation). 

Interestingly, the pA2 is closest to bephenium suggesting that acetylcholine, a 

quaternary ammonium like bephenium, may stimulate the B-subtypes of nAChR 

during the contraction studies (Martin et al., 2004). The potent inhibitory effects of 

derquantel in our Ascaris (Clade III nematode) contraction assays, is comparable to 

the potent inhibitory effects of derquantel seen in Clade V nematode parasites. For 

example, in T. colubriformis  motility is inhibited by 100 nM derquantel (Zinser et al., 

2002) and in H. contortus, the EC50 for inhibition in motility assays is 200 nM 

(Johnson et al., 2004).   

In our electrophysiological studies we found, like Zinser et al (2002), that derquantel 

has a rapid onset of action and had no effect on membrane potential or 

conductance of the Ascaris somatic muscle and that derquantel is a potent 

acetylcholine antagonist.  In the electrophysiological studies, 1 µM derquantel 

shifted the acetylcholine concentration-depolarization plots to the right: the EC50 
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values were shifted from 4.5 µM to 10.2 µM giving a calculated pA2 of 6.1. The pA2 

value of 6.1 is less than we saw in the contraction studies and may be explained if 

the mixture of subtypes of nAChR associated with contraction contains more B-

subtypes than the nAChRs on the bag region of the Ascaris muscle which contain 

more L-subtypes (Qian et al., 2006). The speed of action of derquantel and 

competitive mode of action is consistent with a site of action in the extracellular 

aqueous phase of the nAChR ion-channel.  

In contrast to the effects on the somatic muscle, we found that derquantel had little 

or no effect on the GABA induced hyperpolarizations of somatic muscle or on 

effects of glutamate or abamectin of the pharynx. The potent effects on muscle 

nAChRs and the lack of effect on GABA receptor and GluCls suggest that the 

somatic muscle nAChRs are a major target site for the therapeutic action of 

derquantel.  
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4.5.2 Effects of abamectin on the somatic muscle 

Application of abamectin produced a slowly developing non-competitive antagonism 

of acetylcholine depolarizations and muscle contraction; the effect was to produce a 

reduction in the maximum response without a shift in the EC50. This inhibitory effect 

of abamectin, initially, was unexpected since a potentiating (positive allosteric 

effect) of the ivermectin has been described on nAChRs (Krause et al., 1998; 

Bertrand and Gopalakrishnan, 2007).  The mode of action of ivermectin, a 

macrocyclic lactone like abamectin, as positive allosteric modulator on nAChRs 

involves the transmembrane domains (TM1, TM2 and TM3) of the ion channel 

(Collins and Millar, 2010) as it does for the GluCls (Hibbs and Gouaux, 2011).  

Interestingly however, the positive allosteric effect of ivermectin on nAChRs can be 

converted to an antagonist by one of three mutations (S222M, M253L, and S276V 

located in TM1, TM2, and TM3 regions) (Collins and Millar, 2010). With these 

mutations, ivermectin behaves like a non-competitive antagonist of the nAChRs that 

had no effect on the EC50 but reduced the maximum response as we see here for 

abamectin. Thus abamectin may act like ivermectin in the outer lipid phase of the 

membrane to combine with a lipophilic region of the ion-channel (Martin and Kusel, 

1992; Hibbs and Gouaux, 2011) and depending on the amino acids present in the 

transmembrane regions, acts as a non-competitive antagonist (negative allosteric 

modulator) as we see here. A site of action within the lipid phase of the membrane 

is consistent with a slow onset action. At the Ascaris somatic muscle nAChR, it 

behaved like a non-competitive antagonist.  
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4.5.3 Effects of the combination on the somatic muscle 

We have seen that the effects of derquantel have a rapid onset and derquantel 

behaves in a competitive manner suggesting a site of action on the extracellular 

surface of the nAChR. Abamectin is slower in onset, non-competitive and may have 

a site of action within the lipid phase of in the transmembrane region of the nAChR. 

When the two inhibitors are applied together the action at the two different putative 

sites of action on the nAChR combine and the effects are greater than additive at 

higher (> 3 µM) concentrations of acetylcholine. At vertebrate neuro-muscular 

junctions, the released acetylcholine concentration can reach as high as 5 mM (Jin, 

2010). Hence, the inhibition of acetylcholine response at the somatic muscle of the 

worm produced by the combination may be higher than we have observed here. 

The inhibitory effects of the combination on the somatic muscle may translate into a 

greater therapeutic effect than using either of the individual drugs alone for 

treatment.          

 

4.5.4 Effects of abamectin on the pharynx 

The Ascaris nematode pharynx contains glutamate gated chloride channels 

(GluCls) which are the targeted by avermectin anthelmintics (Martin, 1996). In C. 

elegans, glutamate mediates the actions of inhibitory motor neuron M3 on the 

pharyngeal muscle (Avery, 1993a). GluCl activation is implicated in  reducing the 

locomotion mediated via command interneurons (Wolstenholme and Rogers, 

2005b).  Single channel studies from the pharyngeal muscle vesicles of A .suum 
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show that the GluCls are activated by glutamate and ivermectin and reversibly 

blocked by picrotoxin (Adelsberger et al., 1997b). The GluCl subunits in C. elegans 

are encoded by at least 6 genes: avr-14, avr-15, glc-1, glc-2, glc-3 and glc-4.  

Previous studies on the GluCls show that they are sensitive low concentrations 

(nanomolar) of avermectin anthelmintics. The EC50 values for ivermectin in C 

.elegans GluCls were 0.1 to 0.2 µM (Cully et al., 1994) and H .contortus GluCls 

expressed in Xenopus oocytes had EC50   in the 0.1 to 1nM range (McCavera et al., 

2009). In our pharyngeal preparations, abamectin produced hyperpolarization and a 

concentration dependent increase in the input conductance we attribute to the 

opening of GluCls of the pharynx.  Abamectin had an EC50 of 0.4 µM showing that 

pharynx is sensitive to low concentrations of abamectin. The potency of avermectin 

anthelmintics on nematode worms is a combined effect of endogenous glutamate 

complimented by exogenous avermectins. The resultant effect is a massive 

increase in the chloride conductance of the pharyngeal muscle through irreversible 

opening of GluCls (Hejmadi et al., 2000; Pemberton et al., 2001; Wolstenholme and 

Rogers, 2005b).  

 

4.5.5 Effects of derquantel on the pharynx 

Derquantel had no effect on the resting membrane conductance or on the 

conductance change produced by glutamate or abamectin. These observations 

suggest that derquantel has no effect on their GluCls and that GluCls are not 

involved in the mode of action of derquantel.  
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4.5.6 Anthelmintic resistance and the use of combination drugs in therapy  

Anthelmintic resistance is a concern in parasitic nematode of both humans and 

livestock (Geerts and Gryseels, 2000; Kaplan, 2004b; Jones and George, 2005). 

Resistance can limit the efficacy of current anthelmintics (James et al., 2009). 

Electrophysiological studies in A. suum somatic muscle suggest that cholinergic 

anthelmintics preferentially activate pharmacologically distinct subtypes of nAChRs. 

The  N-subtype  is  preferentially  activated  by  nicotine and oxantel ;  the  L-

subtype  by levamisole; and the B-subtype by bephenium. Further, derquantel 

preferentially antagonizes the B-subtype of nAChRs (Robertson et al., 2002). Our 

studies show that abamectin can potentiate the effects of derquantel in the somatic 

muscle of A .suum.  

Studies in Australia show that, resistance to both broad- and narrow-spectrum 

anthelmintics is widespread (Besier, 2003). Suitable anthelmintic combinations 

favor elimination of those parasitic nematodes that carry resistant genes to only one 

of the anthelmintics. Despite the limitations of anthelmintic combinations being 

expensive, it is becoming clearer that the combinations should be used before 

resistance levels climb too high (Le Jambre, 2010). The use of combination therapy 

is also favored when the two anthelmintics have additive or synergistic effects. The 

combination of anthelmintics is less likely to be successful if the compounds have 

an inhibitory effect on each other.  

 



www.manaraa.com

153 

 

4.6 Conclusion 

We have studied the interaction of derquantel and abamectin a novel anthelmintic 

combination. Our study focused on two important anthelmintic drug target sites in 

the worm namely the somatic muscle nAChRs and the pharyngeal GluCls. Our 

experiments on worm somatic muscle demonstrate that the abamectin acts non-

competitively at the nAChRs of somatic muscle and potentiates the competitive 

antagonism produced by derquantel. It is anticipated that the combination will allow 

a slower rate of development of resistance than either of the two drugs alone. The 

introduction of anthelmintic drugs with new mechanisms or new combinations will 

help us to move ahead in the battle against the evolving resistance appearing in 

nematode parasites.  
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CHAPTER 5. ELECTROPHYSIOLOGICAL CHARACTERIZATION 

OF THE NICOTINIC CHOLINERGIC RESPONSE IN ASCARIS 

SUUM PHARYNX 

Sreekanth Puttachary1, Richard J. Martin2, and Alan P. Robertson 2,3 

 

5.1 Abstract   

  Soil transmitted nematode infections including round worms (Ascaris 

lumbricoides), hook worms (Ancylostoma duodenale & Necator americanus), and 

whipworms (Trichuris trichura), affect more than a billion people worldwide. 

Nematode infections of humans and livestock cause debility, reduced productivity 

and severe economic loss. Chemotherapy is widely used to control these infections. 

However, there are a limited number of effective compounds and therefore a clear 

need to develop new anthelmintic drugs. 

Both the muscular pharynx and the body wall muscle are validated target tissues for 

current anthelmintic drugs. In the present study, we characterized a novel nicotinic 

acetylcholine receptor (nAChR) on the pharynx of the parasitic nematode Ascaris 

suum using electrophysiological techniques. Acetylcholine (ACh) application (100 

µM) produced a large depolarization accompanied by an increase in membrane 

conductance. Selected muscarinic receptor agonists (arecoline, pilocarpine, 

oxotremorine, methylfurmethiodide, all 100 µM) produced a negligible change in 

membrane conductance (δG) indicating the response to ACh was not muscarinic in 

origin. Agonists of vertebrate nAChRs also produced depolarizations and increased 
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conductance in the pharynx, with a rank order potency series of: ACh > nicotine > 

cytisine > epibatidine > DMPP > choline. 

Interestingly, existing anthelmintics that act on body muscle nAChRs in the 

nematode had no significant effect on pharyngeal membrane potential or input 

conductance. Further characterization of the nAChR on Ascaris pharynx has 

revealed pharmacological differences from both the nAChRs found in the vertebrate 

host and those found on nematode body muscle, indicating that this receptor may 

be a suitable target site for new anthelmintic compounds.  

____________________ 

1 Primary researcher and author, Graduate student, Dept. Biomedical Sciences, 
Iowa State University 

2Professor, Dept. Biomedical Sciences, Iowa State University 

2,3Corresponding author and Associate Professor, Dept. Biomedical Sciences, Iowa 
State University 

 

5.2 Introduction 

Gastrointestinal (GI) nematodes affect humans and livestock worldwide. The Global 

prevalence of human GI nematode infections is more than a billion and severe 

infections have resulted in deaths (Savioli and Albonico, 2004; Hotez et al., 2007a). 

GI nematodal infections affect livestock health and productivity resulting in 

substantial economic losses (Kaplan, 2004b). Chemotherapy is a widely used 

approach for controlling these worm infections. There are a limited number of 

anthelmintics available in the market. Repeated use of these anthelmintics to treat 
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worm infections has led to the emergence of resistance in the parasites (Kaplan, 

2004b; Jones and George, 2005). Resistance has reduced the efficacy of currently 

used anthelmintics thus limiting treatment options (James et al., 2009). To achieve 

effective worm-control, research to identify new drug targets on worms has become 

indispensable.   

For decades, ion channels on the worm have been exploited as anthelmintic 

targets. These ion channels include nicotinic acetylcholine receptors (nAChRs) on 

muscle and nerve, GABA gated chloride channels on the somatic muscle and 

glutamate-gated chloride channels on the pharynx. In the present study we propose 

that, the nAChRs of the worm pharynx are a novel pharmacological target. We 

discuss how pharynx nAChRs play a role in feeding and how this physiology can be 

exploited to control worm infections. The pharynx, a muscular pumping organ in 

worms, aids ingestion of food from the surroundings within the host gut. A rhythmic 

peristalsis of the pharynx permits ingestion while the secreted digestive enzymes 

within the pharyngeal lumen help digestion. Pharyngeal peristalsis in nematodes is 

well coordinated by rhythmic activations of excitatory (cholinergic) and inhibitory 

(glutamatergic) motor neurons innervating the pharyngeal muscles (Raizen et al., 

1995; Brownlee et al., 1997). At the neuromuscular synapses, cholinergic motor 

neurons activate the pharyngeal muscles to initiate and maintain peristalsis. ACh 

released from the cholinergic motor nerve binds to the nAChRs on the pharyngeal 

muscles causing depolarization and contraction (Raizen et al., 1995). Glutamate 

released from the glutamatergic motor nerve endings binds to the glutamate gated 
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chloride channels on the pharyngeal muscles causing hyperpolarization and 

relaxation (Martin, 1996; Brownlee et al., 1997). A loss of peristaltic rhythm of the 

pharynx leads to failure of ingestion and starvation of worms (Wolstenholme and 

Rogers, 2005b). Starved and therefore slow moving worms within the host gut are 

expelled.  

The importance of pharyngeal peristalsis for worm survival suggests that the 

receptors involved are attractive targets for pharmacological control of worm 

infections. We propose that, like worm somatic muscle nAChRs (Barragry, 1984; 

Qian et al., 2006), excessive activation of the pharyngeal nAChRs will cause 

paralysis of the worm pharynx. The current literature on the nematode pharynx 

nAChRs is limited.  

 

5.3. Materials and methods 

Adult A .suum worms were collected weekly from the JBS packing plant at 

Marshalltown, Iowa. Locke's solution [composition (mM): NaCl 155, KCl 5, CaCl2 2, 

NaHCO3 1.5 and glucose 5] at a temperature of 35 °C was used to store the worms. 

Locke's solution was changed twice daily and worms from each batch were used for 

experiments within 4 days of collection.  
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5.3.1. Current-clamp recordings from the pharynx 

The pharyngeal muscle preparation  

The pharynx of Ascaris is a large muscular cylindrical tube amenable to 

electrophysiological study. About 1.5-2 cm of worm from the head region containing 

the pharynx was dissected out on a Sylgard™-lined double jacketed bath chamber. 

The cuticle and the muscle were carefully removed by an incision along one of the 

lateral line to expose pharynx. The muscle layer surrounding the anterior 3rd of the 

pharynx was preserved for anchoring. The intestine attached to the posterior end of 

the pharynx was used for stretching and pinning down. The temperature of the bath 

chamber was maintained at 28 °C by inner circulation of warm water (Haake FJ, 

Berlin, Germany). The preparation was continuously perfused with calcium free 

Ascaris Perienteric Fluid-Ringer (calcium free APF-Ringer) composition (mM): NaCl 

23, Na-acetate 110, KCl 24, MgCl2 11, glucose 11, and HEPES 5; NaOH or acetic 

acid was used to adjust the pH to 7.6. The experimental compounds were dissolved 

in calcium free APF-Ringer and applied as described in the results. An in-line 

heating system (SH 27B Warner instruments, CT, USA) was used to pre-warm the 

incoming perfusate to 28 °C before application. The rate of localized perfusion was 

3.5–4 ml min−1 through a 20 gauge needle which was placed directly above the 

recording region of pharynx. The posterior region of pharynx 1-2mm ahead of the 

attachment of the intestine was used for making electrophysiological recordings. In 

order to prevent contraction artifacts affecting our pharyngeal recordings we 

destroyed most of the somatic muscular layer surrounding the pharynx. Pharyngeal 
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preparations with resting membrane potentials greater than -10 mV and the resting 

conductances less than 250 µS were selected for analysis. In individual recordings, 

the peak change in membrane conductance (δG) in response to each drug 

application was determined.  

Current-clamp technique 

We used two microelectrode current-clamp technique to examine the 

electrophysiological responses in the A. suum pharyngeal muscle preparation 

(Fig1A). We used the borosilicate capillary glass (Harvard Apparatus, MA, USA, ID-

0.86 mm, OD-1.5 mm) to prepare voltage recording microelectrodes (V in the Fig 

1A) by pulling on a P-97 Flaming Brown Micropipette puller (Sutter Instrument Co., 

CA, USA). We used thin walled capillary patch glass (Warner instruments, CT, 

USA, OD-1.5 mm, ID-1.16 mm) to prepare the current injecting microelectrode (I in 

Fig.1A) by pulling on a dual stage glass micropipette puller (PC-10,Narishige Co, 

Tokyo, Japan). We used 3 M potassium acetate in our micropipettes to get the final 

resistances of 4-7 MΩ for the voltage recording and 0.5-1 MΩ for the current 

injecting electrode. The recordings were made by impaling the posterior region of 

the A. suum pharyngeal muscle with two microelectrodes, namely current-injecting 

(I) and voltage-recording electrodes (V). We used an Axoclamp 2A amplifier, 1320A 

Digidata interface with Clampex 9 software (Molecular Devices, CA, USA) to record 

and analyze data on a PC based desktop computer.  

The current-injecting electrode injected hyperpolarizing step currents of −1000 nA 

for 500 ms at 0.3 Hz. The voltage-recording electrode recorded the change in 



www.manaraa.com

160 

 

membrane potential in response to the injected currents. Pharyngeal preparations 

with constant resting membrane potentials more negative than −10 mV for 20 min 

and a stable input conductance of <250 µS were selected for the recordings.  

 

5.3.2 Drugs 

Acetylcholine, nicotine, epibatidine, cytisine, pyrantel, oxantel and bephenium were 

obtained from Sigma-Aldrich chemicals (MO, USA). Levamisole was obtained from 

Acros-Organics (NJ, USA). Derquantel (der) was provided by Pfizer Animal Health 

(Pharmacia and Upjohn Co., Kalamazo, MI). 100 mM stock solutions were prepared 

in double distilled water every week and frozen in aliquots at −20 °C. Stocks of 

epibatidine, nicotine, oxantel, bephenium were prepared in DMSO, with the final 

concentration of DMSO in calcium free APF not exceeding 0.1%. Stock solutions 

were thawed just before use. ACh stock was always prepared fresh before the start 

of experiments.  

 

5.3.3 Analysis  

In our preliminary studies, we observed a depolarization with an increased 

membrane conductance in response to the application of ACh. The change in 

membrane potential (δV) and the change in membrane conductance (δG) were the 

two parameters used to measure the responses to the applied drugs. We observed 
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the size of the depolarizations (δV) in response to drugs was dependent on the 

resting membrane potential (RMP) of the preparation. The RMPs recorded from 

preparations across different batches of worms showed variability. The change in 

membrane conductance (δG) in response to a drug across batches of worms was 

more consistent. Hence, we chose change in membrane conductance (δG) as the 

parameter to compare responses to different drug applications. To further limit the 

variations across different batches of worms all our preparations had control 

application/s of 100 µM ACh (applied for 10s). The δG produced by 100 µM ACh 

was set as 100% within each preparation containing other drug applications. The 

δG responses to different drug applications within the preparations were normalized 

to the 100 µM ACh response for comparison.  

 

5.3.4 Statistics  

The peak changes in membrane conductance (δGmax) in response to drug 

applications were normalized to δG response to acetylcholine application (100 µM 

ACh, applied for 10s) within each preparation. The δG responses to other drugs 

were normalized to δG response to acetylcholine to observe their rank order 

potency. We constructed sigmoidal concentration response plots by fitting the data 

by nonlinear regression (GraphPad Prizm V5, San Diego, Ca) to determine the 

EC50 and the maximal response (Rmax). The logEC50, slope and maximal response 
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of control and test concentration response plots were compared using extra sum of 

squares F-test. The significance levels was set to p <0.05.  

 

5.4 Results  

5.4.1 Nicotinic receptor activation contributes to a majority of ACh 

response in pharynx  

ACh is a known agonist at nicotinic and muscarinic receptors in vertebrates. Apart 

from the nAChRs, the Ascaris pharynx is also known to contain G-protein coupled 

acetylcholine receptors (GARs) with a high structural homology to the C. elegans 

GAR-1 receptor. The rank order potency of muscarinic agonists (all used at 100µM) 

observed in yeast functional expression studies was ACh (100%) > carbachol (80%) 

≅ arecoline (76%) > oxotremorine (61%) ≅ bethanechol (58%) > pilocarpine (14%) 

(Kimber et al., 2009). Here we tested the hypothesis that the observed change in 

membrane conductance response (δG) to ACh on the pharynx is produced by 

activation of nAChRs and mAChRs (GARs). 

Our pharyngeal preparations in this group had a resting membrane potential (RMP) 

of -17.6 ± 1.3 mV and a resting conductance of 147.8 ± 13.1 µS (n=8) (mean ± SE). 

We tested responses to the muscarinic agonists ACh, 5-methylfurmethiodide (MFI), 

oxotremorine, arecoline, pilocarpine (all 100µM, 10s application). In applications 

containing arecoline and pilocarpine, we used mecamylamine, a nAChR antagonist 

(30µM) to inhibit nAChRs and to allow only mAChR activation. A control application 
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of ACh (100 µM, 10s)  in the presence of mecamylamine was used for comparison 

of response to nAChR activation. We normalized the conductance change (δG) 

produced by the control ACh application (100 µM, 10s) to 100% in order compare 

the relative responses to other muscarinic agonists.  

The normalized responses to muscarinic agonists (mean ± SE, %) were MFI [4.0 ± 

0.6 % (n=4)], oxotremorine [1.8 ± 0.8 % (n=4)], arecoline [2.6 ± 2.0 % (n=4)], 

pilocarpine [0.7 ± 0.7 % (n=4)]. Mecamylamine (30 µM) inhibited 92% of the ACh 

δG response suggesting nicotinic receptor activation rather than the muscarinic 

receptor activation was responsible for the observed changes in conductance and 

membrane potential (Fig 1.B). Earlier studies have described the pharmacological 

properties of mAChRs in A. suum. Our results demonstrate their contribution to the 

acetylcholine induced conductance changes is negligible. Therefore it was 

unnecessary to further use muscarinic receptor antagonists in our experiments to 

characterize the nAChRs. Other work has documented the phenomenon of 

concentration dependent reversible channel block produced by atropine (IC50 – 4-

10µM) on α3β4, α3β2, α4β4 and α4β2 vertebrate nAChRs (Parker et al., 2003).  
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Figure 1. A. A photograph of female A .suum showing the head region, where the 

pharynx (Ph) is located. A diagram showing current clamp setup for making 

recordings from the posterior region of pharynx I; current injecting electrode V; 
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voltage recording electrode, P; perfusion needle for localized perfusion of Ca
2+

 free 

APF Ringer or drugs E; earth electrode. B. Representative current clamp trace as 

an inset to the bar graph showing the normalized δG response to ACh and 

muscarinic agonists.  Arecoline, pilocarpine and ACh applications in the presence of 

mecamylamine to inhibit nAChR responses and to observe only muscarinic receptor 

responses.  

 

5.4.2 Pharyngeal nAChRs are not activated by existing cholinomimetic 

anthelmintics 

Fig 2 shows the rank potency series of cholinergic anthelmintics on the A. suum 

pharynx. Our pharyngeal preparations in these experiments had a resting 

membrane potential of -19.3 ± 1.1 mV and a resting conductance of 150.5 ± 11.9 

µS (n=21) (mean ± SE). We used selected cholinergic anthelmintics and ACh at 

100 µM for 10s. Tribendimidine was used at 30 µM due to solubility limitations. The 

normalized δG responses (mean ± SE, %) were  bephenium [7.2 ± 3.5 (n=5)], 

thenium [6.1 ± 1.6 (n=4)], levamisole [1.8 ± 0.6(n=4)], morantel [0.3 ± 0.3 (n=4)], 

pyrantel [0 ± 0 (n=4)], oxantel [0 ± 0 (n=4)], methyridine [0 ± 0 (n=4)] and 

tribendimidine [0 ± 0 (n=4)] (Fig 2).  

The rank order potency series for cholinergic anthelmintics on the A. suum pharynx 

is ACh > bephenium > thenium > levamisole ∼ morantel ∼ pyrantel ∼ oxantel ∼ 

methyridine ∼ tribendimidine (Fig 2). Pharyngeal nAChRs differ pharmacologically 
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from the somatic muscle nAChRs of the worm. The rank order potency series of 

cholinergic anthelmintics on pharynx, and the somatic muscle nAChRs of the worm 

are shown in inset table (Martin et al., 2004; Trailovic et al., 2008). 

 

 

Figure 2. Bar graph showing the rank order potency series of selected cholinergic 

anthelmintics producing % change in membrane conductance on A. suum pharynx. 

Table (inset) comparing the rank order potency of cholinergic anthelmintics on 

pharynx and somatic muscle of A. suum. The pharyngeal nAChRs differ 

pharmacologically from the nAChRs of somatic muscle of the worm. 
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5.4.3 Rank order potency series for selected vertebrate nicotinic agonists 

show pharyngeal nAChRs are pharmacologically distinct  

Three subtypes of nAChRs (N-, L- and B-) have been characterized and studied at 

the single channel level on the somatic muscle of A. suum (Qian et al., 2006). The 

N-subtype was preferentially activated by nicotine, oxantel and methyridine. 

Similarly the L-subtype was activated by levamisole and pyrantel, while the B-

subtype was activated by bephenium. The N-subtype agonist sensitivity was 

distinguished from L or B subtype by the antagonists paraherquamide and 

derquantel (Martin et al., 2004; Qian et al., 2006).  

In this study we pharmacologically characterized the nAChRs of the A. suum 

pharynx. We determined whether the pharyngeal nAChRs are pharmacologically 

distinct from the somatic muscle nAChRs of the worm. Our pharyngeal preparations 

in this group had a resting membrane potential of -21.3 ± 1.3 mV and a resting 

conductance of 136.4 ± 14.9 µS (n=13) (mean ± SE). We applied ACh and selected 

nicotinic agonists at 100µM for 10s. The δG responses to test applications of 

selected nicotinic agonists were normalized to the ACh δG. The normalized δG 

responses (mean ± SE, %) produced to selected nicotinic agonists were: nicotine 

[91.9 ± 6.2 (n=9)], cytisine [71.2 ± 5.0 (n=4)], epibatidine [30.5 ± 3 (n=7)], DMPP 

[11.8 ± 2.9 (n=9)] and choline [0 ± 0 (n=4)] (Fig 3). From these studies, the rank 

order potency series for vertebrate nicotinic agonists on the A. suum pharynx 

nAChRs was, ACh > nicotine > cytisine > epibatidine > DMPP > choline (Fig 3). The 
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rank order potency series of selected nicotinic agonists on the pharynx differs from 

that of somatic muscle nAChRs and that of the vertebrate host nAChRs (Table 1).  

 

 

 

 

 

 

 

 

Figure 3. Bar graph showing the rank order potency of selected vertebrate nAChR 

agonists producing % change in membrane conductance in pharynx. The 

responses to agonists were normalized to δG response to control ACh application.  

 

5.4.4 Rank order potency series for selected vertebrate nicotinic 

antagonists confirms pharyngeal nAChRs are pharmacologically distinct  

Our pharyngeal preparations in this group had a resting membrane potential of -

20.2 ± 1.1 mV and a resting conductance of 129.2 ± 6.8 µS (mean ± SE, n=34). We 
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used selected nicotinic antagonists (all at 30µM) to inhibit 100µM ACh responses 

(10s ACh applications). The δG produced by a control application of ACh (100µM) 

was set as 100%. We calculated the % inhibition of the δG response to ACh by 

nicotinic antagonists to determine a rank order potency series. The  % inhibition of 

the ACh (100µM) δG response by selected nicotinic antagonists were (mean ± SE, 

%): d-tubocurarine [94.6 ± 0.2 (n=4)], mecamylamine [92.2 ± 1.9 (n=9)], 

methyllycaconitine [62.6 ± 3.7 (n=5)], paraharquamide [37.2 ± 8.7 (n=4)], derquantel 

(derq) [30.6 ± 7.0 (n=4)], hexamethonium (hexa) [26.8 ± 1.9 (n=4)] and dihydro-β-

erythroidine (DHβE) [17.9 ± 5.0 (n=4)].  

The rank order potency series for nicotinic antagonists on the A. suum pharynx 

nAChRs was, d-tc > mec > MLA > para > derq > hex > DHβE (Fig 4). The rank 

order potency series of nicotinic receptor antagonists on the pharynx differs from 

that of vertebrate nAChRs (Table 1).  

  



www.manaraa.com

170 

 

 

 

 

 

 

 

 

Figure 4. Bar graph showing the rank order potency of selected vertebrate nAChR 

antagonists producing % inhibition of ACh membrane conductance in pharynx.  
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Table 1. Rank order potencies of nAChR agonists and antagonists in Ascaris 

pharyngeal nAChRs observed from our study, Ascaris somatic muscle nAChRs and 

nAChRs of the vertebrate hosts (Harrow and Gration, 1985; Colquhoun et al., 1991; 

Buisson et al., 1996; Virginio et al., 2002; Wannacott, 2007; Trailovic et al., 2008).   
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5.4.5. Effects of nAChR antagonists on concentration response curves of 

acetylcholine and nicotine. 

We determined the concentration response curves by plotting the concentration of 

agonists (1-1000µM, applied for 10s) against the response (δG) produced. The 

response (δG) produced during the increasing concentations of agonist was 

normalized to the response (δG) produced by 100 µM ACh (applied for 10s) within 

each experiment. Fig 5 A shows the concentration response curves for ACh and 

nicotine. The EC50 of ACh and nicotine were 9.5 µM (n=6 )and 11.6 µM (n=8). The 

maximal response of ACh was 103.7 ± 2.4 µS and nicotine was 79 ± 3.9 µS. 

Nicotine reached about 80% maximal response of ACh.  

We determined concentration response of ACh in the presence of nicotinic receptor 

antagonists.  The nicotinic receptor antagonists chosen from the rank order potency 

series (Fig 4) were d-tubocurarine (d-tc) (10µM), methyllycaconitine (MLA) (10µM), 

paraherquamide (para) (10µM) and dihydro-β-erythroidine (DHβE) (30µM). The 

response (δG) produced during the application of agonists alone or agonist in the 

presence of antagonist were normalized to the response (δG) produced by 100 µM 

ACh (applied for 10s) within each experiment.  

Fig 5 B shows the panel of nAChR antagonists d-tc, MLA and para on ACh 

concentration response. The EC50 of ACh concentration response was 9.5 µM (n=6 

). The EC50 values of ACh were 9.8 µM (n=8) in the presence of MLA (10 µM), 12.9 

µM (n=3) in the presence of d-tc (10 µM) and 8.3 µM (n=3) in the presence of 
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paraherquamide (10 µM). The logEC50 of the ACh concentration response curve did 

not significantly differ in the presence of methyllycaconitine (p>0.05, ESS F-test), d-

tubocurarine (p>0.05, ESS F-test) or paraherquamide. We found that the maximal 

response for ACh was inhibited. The maximal response (δG) (mean ± SE, µS) for 

the control ACh concentration response curve was 103.7 ± 2.4 µS. The maximum 

response (δG) was reduced to 57 ± 4.6 µS in the presence of MLA, 23 ± 3 µS in the 

presence of d-tc and 87.7 ± 5.7 µS in the presence of paraherquamide. For 

methyllycaconitine, d-tubocurarine and paraherquamide the unchanged EC50 and 

reduced maximum suggests these compounds acted as non-competitive 

antagonists on the ACh receptor. 

Fig 5 C and D shows ACh and nicotine concentration responses in the presence of 

dihydro-β-erythroidine (DHβE). On ACh concentration responses, DHβE (at 30 µM) 

produced a right shift in the EC50 without changing the slope of the curve (Fig 5C). 

The EC50 for the ACh concentration response curve was 9.5 µM (n=6) and in the 

presence of DHβE was 16.5 µM (n=7). The logEC50 for the ACh concentration 

response curve was significantly different in the presence of DHβE [p=0.001, extra 

sum of squares (ESS) F-test]. The change in EC50 produced by DHβE was 

suggestive of competitive antagonism.  

Fig 5.D shows the effect of  DHβE (30 µM) on the nicotine concentration responses 

Interestingly, DHβE (30 µM) had no significant effect on the logEC50 (p>0.05, ESS 

F-test), the slope of the curve (p>0.05, ESS F-test) or the maximal response 
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(p>0.05, ESS F-test). The EC50 value for the nicotine concentration response was 

11.6 µM and in the presence of DHβE was 9.8 µM. The maximal response (δG) 

(mean± SE, µS) produced to nicotine was 79 ± 3.9 µS and in the presence of DHβE 

was 73.6 ± 2.9 µS.  
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Figure 5. Concentration conductance plots for A. Concentration conductance plots 

for ACh and nicotine plotting % change in conductance vs log molar concentration 

of the drugs. B. Concentration conductance plots of ACh and ACh +nAChR 

antagonists; paraharquamide (par), methyllycaconitine (MLA) and d-tubocurarine 
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(d-tc). These antagonists behaved like non-competitive antagonists on ACh 

concentration response. C. ACh and ACh+30 µM DHβE D. nicotine and 

nicotine+30µM DHβE. The graphs clearly demonstrate that DHβE competitively 

antagonized the ACh concentration response but not the nicotine response, 

demonstrating the presence of more than one nAChR subtype.  

 

5.4.6 Evidence suggesting multiple nAChR subtypes in A. suum pharynx  

From our present study in A. suum pharynx, the maximal response (δG) to nicotine 

was about 80% of the maximal response (δG) produced by ACh. Suggesting that 

about 20% of the ACh response (δG) is from a nicotine insensitive component. In 

addition, dihydro-β-erythroidine (DHβE) produced a competitive antagonism of the 

ACh concentration response while, it did not antagonize the nicotine concentration 

response. These observations demonstrate the presence of more than one nAChR 

subtype in A. suum pharynx (Fig.6). These are 1) nicotine sensitive nAChRs and 2) 

nicotine insensitive nAChRs. Acetylcholine activates both the nicotine sensitive and 

nicotine insensitive subtypes of nAChR. DHβE antagonizes the nicotine insensitive 

subpopulation of nAChR but not the nicotine sensitive subtype of nAChRs.  
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Fig. 6.  Model describing the nAChR population on the pharynx. A majority includes 

nicotine sensitive nAChRs and a minor population includes nicotine insensitive 

nAChRs. The nicotine insensitve nAChRs are antagonized by dihydro-beta-

erythroidine. 

 

5.5 Discussion 

5.5.1. Ion channels of the worms as anthelmintic target 

Ion channels on parasitic worms have been attractive targets for selective targeting 

and development of anthelmintic drugs. Some of these ion channels exploited as 

drug targets are nAChRs, GABA gated chloride channels (on the somatic muscle), 

and glutamate gated chloride channels (on the pharynx). Unlike anthelmintics like 

benzimidazoles that produce a gradual effect by interfering with parasite physiology, 

drugs acting on membrane ion-channels of the nematode have a rapid onset (less 
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than 4 hours). The anthelmintics can act on the membrane ion-channels of the 

parasites as agonists (mimicking natural ligands) or antagonists (competing with the 

natural ligands) or allosteric modulators of ion-channels. On the parasite somatic 

muscle, nicotinic acetylcholine receptors (nAChRs) and GABA gated chloride 

channels are present. The endogenous neurotransmitters namely ACh and GABA 

produce excitation and inhibition of somatic muscle to facilitate locomotion of the 

worm. Cholinomimetic anthelmintics include imidazothiazoles (levamisole, 

tetramisole); tetrahydropyrimidines (pyrantel, morantel & oxantel); 

quaternary/tertiary amines (bephenium, thenium and tribendimidine) and pyridines 

(methyridine). Cholinomimetic anthelmintics mimic ACh when they act on nAChRs 

of the somatic muscle of the worm. Unlike ACh, these cholinomimetic anthelmintics 

are not acted upon by cholinesterase causing persistent activation of nAChRs 

resulting in spastic paralysis (Martin and Robertson, 2007). Derquantel acts as 

competitive antagonist of parasite somatic muscle nAChRs (Robertson et al., 2002; 

Zinser et al., 2002). The anthelmintics that act as antagonist of nAChRs produce 

flaccid paralysis of the worms. Piperazine mimics the natural ligand GABA and 

activates GABA gated chloride channels on the somatic muscle to cause 

hyperpolarization. The hyperpolarization of the somatic muscle of the parasite 

results in flaccid paralysis.  

Glutamate gated chloride channels are present on the pharyngeal muscle of the 

nematodes. Glutamate is the endogenous ligand for activating glutamate gated 

chloride channels. The activation of glutamate gated chloride channels produce 
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hyperpolarization and inhibit the pharyngeal pumping. The macrocyclic lactones 

allosterically modulate glutamate gated chloride channels to potentiate endogenous 

glutamate responses causing paralysis of the pharynx. The macrocyclic lactones 

include ivermectin, doramectin, abamectin and moxidectin. The anthelmintic effect 

of macrocyclic lactones is due to inhibition of pharyngeal pumping resulting in 

starvation of the worms (Wolstenholme and Rogers, 2005b). Currently, there are 

reports of resistance to drugs belonging to all major groups of anthelmintics in major 

livestock producing areas (Kaplan, 2004b).   

 

5.5.2. nAChRs of the worm pharynx: a novel anthelmintic target 

In our present study, we describe the nematode pharynx nAChRs as a potential 

pharmacological target for developing new anthelmintic drugs. The pharyngeal 

muscles contain nAChRs at the neuromuscular synapses. The pharynx of the 

nematode is a muscular pumping organ necessary for feeding. Pharyngeal 

peristalsis is required for ingestion of food, while digestive enzymes secreted by the 

pharynx aid in digestion. Pharyngeal peristalsis is coordinated by excitatory 

(cholinergic) (Raizen et al., 1995) and inhibitory (glutamatergic) (Brownlee et al., 

1997) motor neuronal inputs on to pharyngeal muscles. Drugs like the avermectins 

modulate glutamate gated chloride channels to inhibit pharyngeal function. These 

drugs potentiate the response to glutamate to produce hyperpolarization and 

inhibition of pharyngeal peristalsis in worms (Martin, 1996; Brownlee et al., 1997). 

Currently, resistance has been reported to avermectins in livestock parasites 
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(Kaplan, 2004b). An alternative approach to impair pharyngeal peristalsis in worms 

is by excessive activation of pharyngeal muscle nAChRs. A selective drug 

mimicking ACh will persistently activate pharyngeal nAChRs. An excessive 

activation of somatic muscle nAChRs by cholinergic anthelmintics is known to 

produce spastic paralysis in worms (Barragry, 1984). As pharyngeal peristalsis is a 

coordinated event of excitation and relaxation of pharyngeal muscles, an excessive 

activation of nAChRs will result in spastic paralysis of the pharynx. A paralyzed 

pharynx impairs feeding in worms resulting in starvation (Wolstenholme and 

Rogers, 2005b). The limited literature prompted us to investigate pharyngeal 

nAChRs of the nematodes. We used the pharynx of A. suum as a model and 

pharmacologically characterized these pharynx nAChRs. In this study we have 

shown that pharyngeal nAChRs are pharmacologically distinct from the nAChRs of 

somatic muscle of Ascaris. Further, we determined that pharynx nAChRs are 

pharmacologically distinct from that of nAChRs of the vertebrate host.  

 

5.5.3. Electrophysiological studies on the nAChRs of the parasitic worms 

Electrophysiological studies have helped us understand the mode of action of the 

cholinergic anthelmintics in parasitic worms. The studies have revealed that 

cholinergic anthelmintics act as agonists on distinct subtypes of nAChRs (N, L and 

B subtypes) in the somatic muscle of A. suum (Qian et al., 2006). The cholinergic 

anthelmintics like oxantel and methyridine are selective towards nicotine sensitive 

N-subtypes of nAChRs. Pyrantel preferentially activates levamisole sensitive 
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subtype (L-subtype) while, bephenium preferentially activate the B-subtype of 

nAChRs. Similar studies on the somatic muscle of C. elegans have confirmed 

presence of pharmacologically distinct subtypes (N- and L-subtype) of nAChRs 

(Richmond and Jorgensen, 1999a; Qian et al., 2008). Our studies on pharynx have 

revealed at least two subtypes of nAChRs. Nicotine sensitive nAChRs formed a 

major population while nicotine insensitive nAChRs formed a minor population. 

Dihydro-β-erythroidine distinguished these two nAChR subtypes on the pharynx. 

Dihydro-β-erythroidine had no effect on the nicotine sensitive nAChRs while 

competitively antagonized a minor population of nicotine insensitive nAChRs.     

Some of the predicted mechanisms of resistance to cholinergic anthelmintics have 

been proposed. It is thought to involve a loss of drug sensitive nAChR subtypes on 

the somatic muscle of the parasite. In addition, other predicted mechanism of 

resistance also involve intracellular pathways downstream of nAChR activation 

meditated by ryanodine receptors (Puttachary et al.). Due to a limited number of 

therapeutic agents in the market (James et al., 2009) and existence of anthelmintic 

resistance worldwide, there is an urgency to drug development efforts and the need 

to explore new drug targets. 

 

5.5.4. Novel drug targets to counter anthelmintic resistance in parasites 

 The nicotinic receptors of the worm are still attractive targets for developing 

anthelmintic drugs. This is in light of new anthelmintic drugs that have been 
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released in to the market namely derquantel and monepantel. Unlike derquantel 

which acts as antagonist of somatic muscle nAChRs of worms, monepantel acts as 

positive allosteric modulator of DEG3/DES2 subfamily of C. elegans nAChRs found 

on the mechanosensory neurons of the head region and interneurons of the ventral 

nerve cord (Treinin et al., 1998; Rufener et al., 2010). In the midst of wide spread 

reports of anthelmintic resistance in farm animals, after release of ivermectin (in mid 

1980s), there were no new anthelmintics on the market for more than two decades 

(Geary, 2005). In addition to two new anthelmintic drugs in the market, exploring 

potential drug candidates to target nAChRs of the pharynx will prove beneficial to 

counter emerging anthelmintic resistance. Preliminary, semi-quantitative PCR 

studies suggest that the Asu-acr-21 gene may contribute to the mature pharyngeal 

nAChR. Our current studies are focusing on identifying other genes involved in 

receptor formation and expression of the pharyngeal nAChR in Xenopus oocytes as 

a platform for drug screening.   
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CHAPTER 6. GENERAL DISCUSSION 

My present research address different approaches employed to counter 

anthelmintic resistance. The research in chapter 3 suggests a mechanism to 

increase potency of existing cholinomimetic anthelmintics like levamisole. In chapter 

4, I have tested a novel anthelmintic combination from Pfizer released to control 

parasites which are resistant to anthelmintic drugs. In chapter 5, I have explored a 

novel drug target, the pharyngeal nAChRs in the parasitic nematode A. suum. 

Pharyngeal nAChRs can be screened for developing novel anthelmintics that can 

be used to control resistant parasites.       

The background work for Chapter 3 was extending the observations of Trailovic et 

al (2005) and Verma et al (2007) on the AF2 receptor responses in somatic muscle 

of A. suum. My research on the AF2 receptor activation suggests that similar to the 

potentiation of ACh responses we can also potentiate the responses of cholinergic 

anthelmintics like levamisole. AF2 receptor activation did not potentiate the 

amplitude of levamisole response as observed by Trailovic et al (2005) on the ACh 

response. Rather, the potentiation of the levamisole response was on the 

persistence of its action upon AF2 treatment. After AF2 treatment, the duration of 

the secondary response to levamisole significantly increased compared to the 

control. The potentiation of the levamisole response after AF2 treatment was 

dependent on extracellular a calcium and chloride suggesting the involvement of a 

calcium dependent chloride channel. The potentiation of levamisole response was 

also dependent on the elevation of cytosolic calcium mediated by ryanodine 

receptors. These observations suggest that the potency of cholinergic anthelmintics 
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can be increased by activating neuropeptide receptors. Further, developing new 

anthelmintic drugs which activate the AF2 receptor is expected to produce synergy 

with the actions of existing cholinergic anthelmintics. Future work involving, calcium 

imaging can help us to observe the elevation of cytosolic calcium after AF2 receptor 

activation. Second messengers (cAMP or calcium levels) assays are also important 

as they can reveal the mechanisms involved after AF2 receptor activation until the 

potentiation of nAChR responses.      

In Chapter 4, I have tested the interactions of derquantel and abamectin released 

into the market as a novel anthelmintic combination Startect®. Anthelmintic 

combinations are generally useful to control parasites which have developed 

resistance to one or more groups of anthelmintic drugs. The inhibitory actions of 

Derquantel on the ACh concentration responses suggested a competitive 

antagonism. The slow inhibitory actions of abamectin on the ACh concentration 

responses suggested a non-competitive antagonism. The effects of the combination 

of derquantel and abamectin were greater than the predicted addictive effect on the 

ACh concentration responses. The combination of derquantel and abamectin is 

predicted to be greater than the responses of individual drugs on the somatic 

muscle of A. suum. 

On the pharynx of A. suum, abamectin produced a profound increase in the 

membrane conductance but, derquantel produced no significant effects. The 

conductance response of the combination was not significantly different from the 

response of abamectin. We did not observe any significant interaction of the 

abamectin and derquantel on the pharynx of A. suum. We observed that the 
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combination of derquantel and abamectin was favorable due to their effects on two 

important targets on the parasitic worm. On the somatic muscle we observed a 

greater than additive effect of the combination and on pharynx, abamectin alone 

produced a profound response.   

In chapter 5, I have pharmacologically characterized nAChRs of the pharynx that 

are unexploited drug targets. In addition, my studies infer that the pharyngeal 

nAChRs are pharmacologically distinct from the known nAChRs of the somatic 

muscle the worm or the vertebrate host. The currently available cholinergic 

anthelmintics do not act on these receptors implying these receptors are novel drug 

targets. The distinct pharmacology of pharyngeal nAChRs is an advantage for 

selective targeting of parasites with minimal side effects to the vertebrate host. 

Future studies for the identification of subunit genes responsible for forming the 

mature pharyngeal nAChRs are important. Identification of subunits genes helps us 

to express the pharyngeal nAChRs in Xenopus oocytes for high throughput 

screening for potential drug candidates. Expression studies can also help us to 

observe the pharyngeal nAChRs at the single channel level using patch clamp. 

Expression of nematode pharyngeal nAChRs in Xenopus can reveal the receptor 

combinations and pharmacology to make comparisons with the native receptors of 

the pharynx of the parasitic nematode A. suum and others.  
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APPENDIX 1. ELECTROPHYSIOLOGICAL RECORDING FROM 

PARASITIC NEMATODE MUSCLE 

1Modified from a paper published in Invertebrate Neuroscience (2008) 8: 167-175. 

Alan P. Robertson2, 3, Sreekanth Puttachary3, Samuel K Buxton3, Richard J 

Martin3 

1.1 Abstract 

Infection of man and animals with parasitic nematodes is recognized as a significant 

global problem (McLeod, 1994; Hotez et al., 2007b). At present control of these 

infections relies primarily on chemotherapy. There are a limited number of classes 

of anthelmintic compounds and the majority of these acts on ion-channels of the 

parasite (Martin et al., 1996a). In this report, we describe electrophysiological 

recording techniques as applied to parasitic nematodes. The aim of this report is: 

(1) to promote the study of ion channels in nematodes to help further the 

understanding of antinematodal drug action; (2) to describe our recording 

equipment and experimental protocols; and (3) provide some examples of the 

information to be gleaned from this approach and how it can increase our 

understanding of these important pathogens.  

______________________ 

1Reprinted with permission of Invertebrate Neuroscience (2008) 8: 167-175 

2 Corresponding author and Assoc. Professor, Dept. Biomedical Sciences, Iowa 
State University 

3 Contributed in writing the manuscript 
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1.2. Introduction 

Nematode infections are a significant problem in both human (Hotez et al., 2007) 

and veterinary medicine (McLeod, 1994). Chemotherapy is widely used for treating 

these infections. The range of drugs available for treatment is limited and repeated 

large scale use has led to the development of drug resistance in numerous parasite 

species (Kaplan, 2004a). It is anticipated that the problem of drug resistance will get 

worse particularly since only one new class of anthelmintic has come to market 

recently (emodepside). A Consortium on Anthelmintic Resistance SNPS (CARS) 

has been set up to monitor drug resistance and advance molecular methods for 

detecting resistance (http:// consortium.mine.nu/cars/pmwiki.php/Main/HomePage).  

The majority of anthelmintic compounds act on the neuromuscular system of the 

worm, for review see Robertson and Martin (2007). As with any excitable system, 

ion-channels are central to nematode neuromuscular signaling and function. Here 

we review the methods we have used to study ion-channels on nematode muscle 

that are either potential or actual target sites of new and existing compounds. The 

current anthelmintics that act on nematode ion-channels include: the 

avermectins/milbemycins which act on glutamate-gated chloride channels and/or 

GABA channels; the nicotinic anthelmintics (pyrantel, etc.) gate non-selective cation 

channels (nicotinic acetylcholine receptors). However, our understanding of the 

receptors activated during the therapeutic response is incomplete. In addition, there 

are many other ion-channels (peptide-gated, potassium and calcium selective 

channels) that may have critical roles for neuromuscular function in the nematode. 
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Here we describe the electrophysiological methods we have used to examine 

nematode ion channels. These techniques are widely used by biologists to study 

channels in almost every living system and are not specific to our approach. We 

give details of methods of how we use them to study parasitic nematode ion 

channels. Our aim is to encourage others to study this important but overlooked 

field. This report is not intended as an introduction to electrophysiology. It is 

intended to highlight the small alterations in methodology required to adapt these 

classical electrophysiological techniques to study currents and channels in parasitic 

nematodes. 

 

1.3 Methods 

1.3.1 Nematode tissue 

Successful electrophysiological studies require a regular supply of live, viable 

parasite tissue (Fig. 1). This, in itself, is a common limiting experimental step: many 

parasitic species cannot easily be maintained for long periods in vitro. We have 

found Ascaris suum can be obtained from the local abattoir, although the ease of 

collection (related to the incidence of infection in the local swine population) 

appears to be somewhat seasonal. Adult worms remain viable for 4–7 days when 

kept at 30–35_C in Locke’s solution (mM): NaCl 155; KCl 5; CaCl2 2; NaHCO3 1.5; 

D-glucose 5. It is possible, though significantly more labor and cost intensive, to 

maintain experimental infections of different parasite species; the 
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Oesophagostomum dentatum life-cycle can be successfully maintained by passage 

through pigs (the native host) and will also yield useful adult worms on euthanasia 

of the hog. An additional benefit of using laboratory infections is the possibility of 

maintaining specific isolates, e.g. drug resistant isolates that have less genetic 

diversity than sampling the wild population. Obtaining viable material from other 

parasite species (e.g. human pathogens) can be more problematic and may 

necessitate the studies to be carried out on non-adult life cycle stages or even 

expression of the ion channel of interest in a heterologous system, e.g. Xenopus 

laevis oocytes. 

 

1.3.2 Dissection 

Ascaris are large worms and the dissection needed to expose the muscle cells for 

recording is simple. A ~1 cm section of the worm is cut from the anterior region of 

the parasite. The resulting tube is then cut along one of the lateral lines and pinned 

onto a Sylgard lined recording chamber cuticle side down. The gut is easily 

removed using fine forceps to expose muscle bags. With smaller nematodes the 

same approach can be applied but this time using the whole length of the worm. For 

adult O. dentatum, the entire worm (~1 cm) is pinned into the chamber (head and 

tail only) and then cut along a lateral line using a scalpel. The gut and reproductive 

tissue can then be removed and the preparation pinned out further to reveal the 

somatic muscle cells. A similar approach has been developed for 

electrophysiological recording from the muscle cells in Caenorhabditis elegans 
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(Richmond and Jorgensen, 1999b). For C. elegans, the small size of the worms 

means that the pins have been replaced by cyanoacrylate glue, but the principles of 

sticking the worm down, cutting it open, removing the gut and reproductive tissue 

and producing a ‘‘flap’’ or ‘‘filleted worm’’ remain the same. Thus, 

electrophysiological techniques have been applied to worms from ~30 cm to less 

than 1 mm in size. It should be noted, however, that as the worm size decreases 

the technical difficulty of the dissection increases substantially. 

 

Figure 1. A. Photograph of adult Ascaris suum; B. photograph of muscle flap 

preparation showing muscle cell bags (~200 µlm diameter) suitable for two-

electrode recording techniques. The faint horizontal line is the ventral nerve cord in 

this preparation. 
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1.3.3 Two electrode current-clamp 

The large size of many nematode cells makes them amenable for study using 

classical two-electrode recording techniques. The electrophysiology ‘‘rig’’ used for 

both current-clamp and voltage-clamp experiments is essentially identical (Fig. 2). 

The electronic components are: a current/voltage amplifier (Axoclamp 2A or 2B); a 

digitizer to convert the amplified signals from analog to digital format (Digidata 

1320A/1322A) and a computer for running the data acquisition software. The 

computer software (Clampex v8 or v9, Axon Instruments) not only acquires the data 

but can be used to control the perfusion system and command the amplifier to inject 

current or voltage through either electrode. The tissue is perfused by a system 

controlled by six valves, a computer and a Warner VC-6 valve controller. The 

incoming perfusate is warmed to the desired temperature by a Warner SH-27B 

inline heater controlled by a Warner TC-324B heater controller. The preparation is 

viewed using a Stereo zoom dissecting microscope (Bausch & Lomb) and a fiber 

optic light source. The tissue is mounted in a Sylgard lined Perspex chamber 

(custom made) surrounded by a water jacket to maintain temperature. The water 

jacket is perfused with warm water using a heated water pump (Isotemp 301b, 

Fisher Scientific). Microelectrodes are mounted on the amplifier head stages and 

maneuvered into position using a Leica micromanipulator. 

For current-clamp experiments we pull microelectrodes using standard walled 

borosilicate glass with filament, o.d. 1.5 mm, i.d. 0.86 mm (G150F-6, Warner 

Instruments). Microelectrodes are fabricated using a Flaming/Brown horizontal 
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electrode puller (Model P-97, Sutter Instruments) and are typically pulled to a 

resistance of 20–30 MΩ. The filament allows easy backfilling of the electrodes with 

the relevant solution, typically for current-clamp this is 3 M potassium acetate. The 

recording chamber is mounted on a nitrogen supported anti-vibration table (TMC 

Corp.) to minimize mechanical noise. A Faraday cage (TMC Corp.) surrounds the 

recording chamber to reduce electrical noise. Microelectrodes are positioned 

directly over the cell to be recorded from. The muscle cell is carefully impaled with 

both electrodes. Typically resting membrane potentials are in the range -25 to -40 

mV for somatic muscle cells in Ascaris. The current injecting protocol is then applied 

through one microelectrode (Im, Fig. 2D); our standard protocol is 0.5 s pulses of -40 

nA current at a frequency of 0.25 Hz. Another microelectrode (Vm, Fig. 2D) can then 

be used to monitor the membrane potential and also the input conductance of the 

cell (typically 1–3 µS). The signal is filtered at 0.3 kHz, digitized and stored on the 

computer hard drive for later analysis. The effect of perfused drugs can then be 

monitored. It is possible to record for ~1 h from a single cell in a healthy 

preparation. Our basic recording solution, Ascaris Perienteric Fluid (APF) consists 

of NaCl (23 mM), Na-acetate (110 mM), KCl (24 mM), CaCl2 (6 mM), MgCl2 (5 

mM), glucose (11 mM), HEPES (5 mM), pH 7.6, adjusted with NaOH, and can be 

modified when necessary to determine the ionic basis of drug effects. 
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Figure 2. A. Photograph; B. diagram of two electrode current-clamp ‘‘rig’’; C. 

photograph and D. diagram of the recording chamber for current-clamp 

experiments. The muscle flap is clearly seen with both microelectrodes visible. The 

perfusate is applied via a 20-gauge needle (gray arrow in diagram) and excess 

removed by gravity through the outflow on the bottom right of the photograph and 

diagram (gray circle). 
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1.3.4 Two electrode voltage-clamp 

The electrophysiology ‘‘rig’’ for two-electrode voltage clamp is identical to that used 

for current-clamp experiments. However, there are some small but significant 

changes required to perform successful voltage-clamp experiments. Firstly, in 

electrode manufacture, the large size of the Ascaris muscle cell means that space 

clamp is quite poor. The injection of the large currents required to effect the desired 

voltage change requires a lower resistance current injecting electrode. Typically for 

voltage-clamp experiments we use a current injecting electrode (Im) with a 

resistance of 2–5 MX. This is easily achieved by carefully breaking the tip of a 

standard current-clamp electrode using a piece of tissue paper. The voltage sensing 

electrode (Vm) is a standard current-clamp electrode. 

Secondly, in voltage-clamp experiments, it is desirable to investigate the current 

flow through specific ion channel types or currents carried by individual ion species, 

e.g. outward K currents or inward Ca currents. To this end it is desirable to 

eliminate, as much as possible, currents carried by other ions and channels. 

Traditionally, this is achieved by either elimination/substitution of ions (other than 

the ion of interest) from recording solutions or by pharmacological block of other 

channel types present. For example, to record voltage activated inward calcium 

currents we have added cesium to the pipette filling solution (intracellular Cs blocks 

potassium currents, electrode fill solution is 1.5 M Cesium acetate + 1.5 M 

potassium acetate) and 4-amino pyridine (4-AP) to the bathing solution (4-AP is a 

selective blocker of K channels). Conversely, we have found that voltage-activated 
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outward potassium currents are more easily studied when calcium is substituted for 

magnesium in the bathing medium, thus eliminating voltage activated inward 

calcium currents. It is also possible to isolate a current of interest by varying the 

voltage changes applied to the cell. 

Isolating and optimizing the current to be studied is often the most demanding and 

time consuming aspect of these experiments. Unfortunately, parasitic nematodes 

are not the most widely studied group of organisms and drugs that affect ion 

channels in other preparations have been found to be inactive or significantly less 

active on Ascaris muscle cells. For example, the calcium channel blocker verapamil 

is frequently used to eliminate certain types of calcium current in vertebrate 

preparations, thus facilitating the study of other current types. Unfortunately, in 

Ascaris verapamil has no significant effect on voltage gated inward currents. 

 

1.3.5 Single-channel patch-clamp 

The majority of parasitic nematode cell types we have worked with are too large to 

render whole cell patch-clamp recording a viable option; so we use two-electrode 

techniques. Whole cell patch recording has been successfully developed for 

investigating the muscle cells of C. elegans (Richmond and Jorgensen, 1999a) and 

is not described further here. It should be noted, however, that this approach may 

be suitable for the study of smaller nematode cells where impalement with two 

sharp electrodes is not possible. It is possible to use the patch-clamp technique to 
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measure the properties of individual ion channel molecules. This ‘‘single-channel’’ 

patch recording technique is relatively straightforward using parasitic nematode 

muscle cells.  The principle of this technique is the electrical isolation of a small 

‘‘patch’’ of membrane containing one (or very few) ion channel molecules. Then 

conventional voltage protocols are applied to the membrane patch and the opening 

and closing of the single channel molecule can be measured. 

The principles behind this technique are straightforward but in practice this is 

probably the most technically demanding compared to the other approaches 

outlined in this review. For single-channel recording from nematode muscle we use 

an anti-vibration table and Faraday cage (TMC Corp.) as in the current-clamp 

‘‘rigs’’. The amplifier is an Axopatch 200B (Axon Instruments) connected to a PC 

(Dell) via a digitizer (Digidata 1320A/1322A) and controlled by Clampex (v8 or v9) 

data acquisition software (Axon Instruments). Nematode muscle cells or muscle cell 

derived vesicles are held in a recording chamber (Warner Instruments) and viewed 

through a Nikon TE2000 inverted light microscope at 9400 magnification. Vesicles 

are easily viewed under normal light but small C. elegans muscle cells are best 

viewed using DIC optics. The amplifier head stage and microelectrode are 

positioned using a Narishige (MHW-3, Narishige Inc.) hydraulic micromanipulator. 

Microelectrodes for patch clamp studies are pulled from thin walled glass capillaries, 

o.d. 1.5 mm, i.d. 1.16 mm with no filament (G85150T-3, Warner Instruments) using 

a two stage vertical electrode puller (models PP-830 or PC-10, Narishige Inc.). 

Electrodes are coated close to the tip with Sylgard to improve frequency responses 
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and fire polished (MF-900 micro-forge, Narishige Instruments) to the desired 

resistance, typically 2–5 MX. 

A major requirement for successful patch-clamp experiments is the formation of a 

high resistance seal (>1 GΩ, a giga seal) between the glass microelectrode and the 

cell membrane. Giga seal formation requires clean debris free membranes, which 

are reasonably common in cells in tissue culture but less so in intact tissue. Ascaris 

and other nematodes have a large amount of collagen overlying the muscle cell 

preventing giga seal formation. This must be removed by enzyme treatment using 

collagenase (type 1A, Sigma). Collagenase treatment removes the collagen matrix 

and allows access of the patch pipette to clean muscle cell membranes. One result 

of collagenase treatment is the ‘‘budding’’ off of clean membrane vesicles from the 

bag region of the muscle cells. By applying the patch clamp technique Martin et al. 

(1990) discovered that these membrane vesicles contain functional ion-channels. 

We have successfully applied this method to record ion channels from vesicles 

originating from O. dentatum muscle cells (Robertson et al., 1999b). Details of 

vesicle preparation and recording protocols are given below. 

Ascaris were dissected and a muscle flap was prepared and pinned cuticle side 

down onto a plastic dish lined with Sylgard. The muscle flap preparation was 

washed with maintenance solution to remove fragments of the gut. Maintenance 

solution is (in mM): 35 NaCl, 105 sodium acetate, 2.0 KCl, 2.0 MgCl2, 10 HEPES, 

3.0 D-glucose, 2.0 ascorbic acid, 1.0 EGTA, pH 7.2 with NaOH. The maintenance 

solution was then replaced with collagenase solution. Collagenase solution is 
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maintenance solution without EGTA and with 1 mg/ml collagenase Type 1A added 

(Sigma). After collagenase treatment for 4–8 min at 37oC, the muscle preparation 

was washed (5–10 times) and incubated in maintenance solution at 37oC for 20–40 

min. Small membranous vesicles, 10–50 lm in diameter, grew out from the 

membrane of the muscle cells. These membranous vesicles are transferred to a 

recording chamber using a glass Pasteur pipette. For O. dentatum the vesicle 

preparation protocol is unchanged, however, the yield of vesicles is significantly less 

due to the smaller size of the parasite. We have found that vesicle yield and quality 

can vary significantly between batches of worms and worms of different size. As a 

guide, smaller worms require less collagenase treatment than larger ones. 

Prolonged collagenase treatment yields an abundance of vesicles but they are more 

fragile and rapidly become unusable. Shorter collagenase treatment yields fewer 

vesicles but they are generally more robust. For worms as small as C. elegans the 

collagen matrix is significantly less of a problem and collagenase treatments of 0.5 

mg/ml for 5–10 s are adequate to clean the muscle cell membrane and allow seal 

formation directly from the body wall muscle cells. Finally, we have found that 

collagenase from different suppliers or even different batches from the same 

supplier can affect the quality of vesicles produced. 

Vesicles are placed in the recording chamber and patch experiments are carried out 

in the isolated inside out patch configuration. Achieving the outside-out patch 

configuration is considerably more difficult when using membrane vesicles as they 

tend to implode when rupturing the patch membrane. The recording conditions for 
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studying nAChR channels are given below. Voltage protocols and solution recipes 

can be altered depending on the ion-channel to be studied. 

The pipette was filled with pipette solution containing (mM): CsCl, 140; MgCl2, 2; 

HEPES, 10; EGTA, 1; pH 7.2 with CsOH. The pipette solution also contained the 

agonist (levamisole, acetylcholine, etc.) at the desired concentration. The bathing 

solution was (mM): CsCl, 35; Cs acetate, 105; MgCl2, 2; HEPES, 10; EGTA, 1; pH 

7.2 with CsOH. As in other voltage clamp experiments, it is desirable to isolate the 

specific ion-channel of interest. To this end the bathing solutions contained 

symmetrical Cs as it permeates the nAChR but blocks potassium channels. The 

chloride concentration was asymmetrical to identify contaminating chloride channels 

by their non-zero reversal potentials on later analysis. Calcium is absent from the 

solutions to prevent contamination of the recordings with Ca-dependent chloride 

channel openings. Typically for ligand-gated ion channels we record for 

approximately 1 min at several different holding potentials between -100 and +100 

mV (normally, -100, -75, -50, +50, +75 and +100 mV). Membrane breakdown is 

common at both -100 and +100 mV. In some preparations, we have found that 

addition of 0.5 mM dithiothreitol helps to stabilize the membrane at more extreme 

potentials (Robertson et al. 1999). Recordings are viewed in real time by filtering at 

2.5 kHz (8-pole Besel filter, custom made) and viewing on a digital storage 

oscilloscope (Hitachi VC-6025). The recordings are also filtered by the amplifier (5 

KHz, Besel filter) digitized and stored on the PC for later analysis. 
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As with all recordings made using the above methods the data generated is suitable 

for analysis using standard methods. In the case of nAChR single-channel currents 

we normally calculate the single-channel conductance, mean open-time, mean 

closed-times and the probability of the channel being in the open state (Popen). Other 

more complex single-channel analysis is possible but beyond the scope of this 

manuscript. 

 

1.4 Results 

Examples of the type of data available from each of our experimental approaches 

are given below. The data in this section was obtained from Ascaris somatic 

muscle. 

 

1.4.1 Illustrative results using two electrode current-clamp 

Figure 3 is a current-clamp recording from Ascaris somatic muscle. Figure 3A is a 

low time resolution display covering approximately 30 min. The blue arrow (dark 

gray) indicates the resting membrane potential of the cell (-37 mV in this 

experiment). The red arrow (light gray) shows the voltage response to the -40 nA 

injected current pulses. The size of the voltage response is inversely related to the 

input conductance of the cell. The size of the response increases as the 

conductance decreases (when ion channels close) and vice versa. Figure 3A clearly 

demonstrates that levamisole application induces a rapid depolarization. When the 
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trace is examined in more detail (Fig. 3B, C) the effect on the cell’s conductance 

also becomes apparent. In Fig. 3B, C, the red arrow (light gray) again represents 

the response to injected current and the blue arrow (dark gray) this time represents 

the depolarization induced by levamisole. In Fig. 3B the depolarization induced by 

levamisole (blue arrow, dark gray) is clearly seen. Levamisole is an agonist of the 

nicotinic acetylcholine receptor (nAChR) ion channel; application of the drug causes 

these channels to open and cations to enter the cell thus causing the depolarization. 

The opening of the ion channels causes an increase in input conductance during 

the depolarization. The red arrow highlights the voltage response to injected current 

and at the peak of the depolarization this response is reduced, reflecting the 

conductance increase due to nAChR opening. Figure 3B is the levamisole response 

after a 2 min application of the neuropeptide AF2 (1 µM). It is apparent that both the 

levamisole induced depolarization (blue arrow) and conductance change are 

substantially increased by treatment with this peptide. Figure 3A also demonstrates 

that AF2 treatment prolongs the recovery time after levamisole treatment. 
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Figure 3. A. Low time resolution current-clamp trace illustrating the effects of 20 s 

applications (asterisk) of 1 µM levamisole (4 ml/min flow rate) before and after 

treatment of the muscle flap with 1 µM AF2 (a nematode FMRF-related 

neuropeptide). Blue arrow illustrates the resting membrane potential while the red 

arrow illustrates the size of the voltage response to -40 nA injected current. 

Levamisole induces an obvious depolarization of the cell; B, C higher time 

resolution view of sections of the recording in A. Red arrow (light gray) illustrates 

the voltage response to injected current and blue arrow (dark gray) illustrates the 

amplitude of levamisole induced depolarization. It can be clearly seen that both the 

depolarization and conductance change in response to levamisole are larger after 

AF2 treatment C than before B.  
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1.4.2 Illustrative results using two electrode voltage-clamp 

A sample experiment using two electrode voltage-clamp recording on Ascaris 

muscle is shown in Fig. 4. In this experiment, we have isolated the voltage gated 

potassium currents and examined the effects of the potassium channel blocker 4-

amino pyridine (4-AP). To study the potassium currents in isolation we have 

replaced calcium (a permeant ion) in our recording solutions with the same 

concentration of magnesium (an impermeant ion) to remove the voltage activated 

inward currents carried by calcium. Figure 4A are the outward currents carried by 

potassium in response to 40 ms step voltage changes in the holding potential of the 

cell. In this instance, the cell was held at -35 mV and stepped to -25, -20, -15, -10, -

5, 0, 5, 10, 15, and 20 mV. The same voltage step protocol was applied in the 

presence of 5 mM 4-AP (Fig. 4B) which substantially reduced the amplitude of the 

outward potassium currents. 

After a 30-min wash period the currents had partially recovered (Fig. 4C). The 

maximum current at each voltage step was plotted (Fig. 4D) and clearly shows the 

inhibitory effect of 4-AP and this effect was partially reversible.  
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Figure 4 Voltage activated potassium currents from Ascaris muscle bags recorded 

under two electrode voltage-clamp; A. under control conditions (Ca free APF 

solution); B. during application of 5 mM 4-amino pyridine (4-AP); and C, after 30 

min wash in calcium free APF solution; D. current–voltage relationship for the 
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recordings in A–C clearly showing the inhibitory effect of 4-AP and that it is partially 

reversed on washing. 

 

1.4.3 Illustrative results using single-channel patch-clamp 

A sample of a recording from an Ascaris muscle derived vesicle is shown in Fig. 5A. 

The isolated inside-out patch was held at +75 mV and the patch pipette contained 

30 µM levamisole. Rectangular channel openings are clearly visible ranging from ~2 

to 4 pA in size and ~0.3 to 10 ms in duration. In this experiment, there are openings 

to more than one level indicating the presence of multiple subtypes of nAChR 

present in this isolated patch of membrane. In Fig. 5B, we plotted an amplitude 

histogram of all openings in the recording and fitted with Gaussian distributions to 

calculate the mean amplitude for each of the three peaks. By using multiple 

agonists, concentrations and antagonists we have been able to characterize three 

subtypes of nAChR on Ascaris muscle cells that have different single-channel and 

pharmacological properties. Figure 6 is a summary diagram of these findings where 

N-type refers to nicotine preferring subtype of nAChR, L-type refers to a levamisole 

preferring subtype of nAChR and B-type refers to a bephenium preferring subtype 

of nAChR.  
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Figure 5 A. Sample of a single-channel recording from a membrane patch of 

Ascaris muscle vesicle held at +75 mV. Discrete single-channel openings are visible 

as rectangular current pulses of ~2 – 4 pA. Blue asterisk highlight the presence of 

three separable open levels and therefore three different ion channel molecules in 

this membrane patch; B. histogram of all channel openings from the recording 
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illustrated in A. Three separable peaks are obvious and have been fitted using 

Gaussian distributions to determine the amplitude of channel opening at +75 mV for 

each channel type. 

 

Figure 6 Summary diagram representing a membrane patch containing the three 

nAChR subtypes present on Ascaris muscle with some of their single-channel and 

pharmacological properties illustrated. 

 



www.manaraa.com

208 

 

1.5 Discussion 

The development of electrophysiological methods has taken ~50 years to mature. 

Early studies concentrated on large easily observable cells that were easy to 

impale, e.g. the squid giant axon. Interestingly, Ascaris suum muscle cells were 

investigated as early as the 1950s (Jarman, 1959). As the techniques were refined 

the need for large cells decreased. Additionally, Brading and Caldwell (1971b) 

found that Ascaris had different properties to other more typical cell types. These 

developments possibly led to the conclusion that Ascaris was not necessarily a 

good model for general electrophysiology studies of cells and have thus restricted 

the amount of research carried out on this and other parasitic nematodes using 

electrophysiological techniques. 

We have described some of the electrophysiological methods that can be used to 

study ion-channels in Ascaris and other nematodes. Included in the methods 

section are additional details that we have found important for successful studies, 

details that are seldom discussed at length in other publications due to space 

constraints. The aim of this report is to provide detailed information to facilitate the 

study of ion channels in parasitic nematodes by any interested researchers. 

The importance of studying these parasite ion-channels is readily apparent. There 

are a number of groups of anthelmintic compound that act on channels in parasites. 

These include: the cholinomimetics (pyrantel, etc.) that act as agonists of nAChRs 

on muscle (Harrow and Gration, 1985); the avermectins are allosteric activators of 

glutamate-gated chloride channels in the pharynx (Wolstenholme and Rogers, 
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2005a) and/or GABA-gated chloride channels on muscle; piperazine an agonist of 

GABA-gated chloride channels on muscle (Martin, 1982b); emodepside is proposed 

to have an effect on potassium currents (Guest et al., 2007); and recently the amino 

acetonitrile derivatives (AADs) are proposed to be nAChR antagonists (Kaminsky et 

al., 2008). 

We have detailed our approaches on nematode muscle. Several other groups have 

successfully used electrophysiological techniques in a variety of preparations 

including the musculature (Holden-Dye and Walker, 1990) to examine ion-channel 

properties, drug action and more basic biological questions. The pharynx of Ascaris 

has been investigated using whole cell current-clamp (Martin, 1996) and voltage-

clamp (Byerly and Masuda, 1979a), while Adelsberger et al. (1997a) successfully 

developed vesicle production from the pharynx to make patch recordings of 

glutamate-gated chloride channels. The electrophysiological properties of parasite 

nerve cells have also been investigated in detail (Davis and Stretton, 1996). While 

more recent work on C. elegans has developed techniques for recording whole cell 

currents from body wall muscle (Richmond and Jorgensen, 1999a), single-channel 

recording of nAChRs from body wall muscle (Qian et al., 2008) and even electrical 

recording of pharyngeal activity (Cook et al., 2006). 
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